
JOURNAL OF BAKU ENGINEERING UNIVERSITY- MATHEMATICS AND COMPUTER SCIENCE

2024. Volume 8, Number 2 Pages 120-129

120

UOT:002.6:025.3/.4

DOI: https://doi.org/10.30546/09090.2025.01.2027

ARCHITECTURE AND MODEL OF A SPECIAL-PURPOSE

ELECTRONIC DOCUMENT MANAGEMENT SYSTEM

WITH A DISTRIBUTED STRUCTURE

Vagif GASIMOV1, MAMMADZADA Nargiz*2
1Baku Engineering University, Baku, Azerbaijan

vaqasimov@beu.edu.az

2Azerbaijan Technical University, Baku, Azerbaijan

mammadzada.nargizw@gmail.com

ARTICLE INFO ABSTRACT

Article history:

Received: 2025-04-14

Received in revised form:2025-04-15

Accepted:2025-04-16

Available online

The importance of forming and bringing the organization of databases

of medical institution branches into a more suitable form in terms of

their structure, accessibility and flexibility of applications, and the

development of methods in this regard are presented in the article. Thus,

having each branch's own database increases the flexibility of local

queries, minimizes duplication of general data, and provides a structure

for distributing certain data in a way that is specific to the functions and

medical aspects of the branches. Many existing methods for distributed

databases have been considered and the suitability of some of them for

medical documents has been noted.

Keywords:

Distributed databases, fragmentation,

replication, database conflicts, database

synchronization

1. Introduction

The geographical location of medical institutions affects the structure of the databases they

use [1]. As is known, branches of medical institutions differ from each other in terms of

functionality. Thus, the equipment or laboratory analysis technique system available in branch X

of a medical institution may not be available in its other branches. This leads to differences in the

types of documents produced in each of them and necessitates the organization of the database

content between branches in accordance with their functionality. On the other hand, in order to

ensure the organization of each branch's own databases, it is also proposed to ensure their

geographical organization. Thus, when a patient who applies to a branch applies to that branch

for the second time, if the query for his previous information is made not from the center, but

from the database of the branch where he is currently located, then the query result can be

obtained faster [2]. On the other hand, collecting existing databases in one center and creating

replication is considered an important factor in ensuring that it becomes a more sustainable

system [3]. In such a case, it is more appropriate to create a database system where each branch

has its own database, as well as a replication (copy) of the databases in each other branch in a

single center (Figure 1).

*Mammadzada Nargiz.

E-mail addresses: mammadzada.nargizw@gmail.com

https://doi.org/10.30546/09090.2025.01.2027

Architecture and Model of a Special-Purpose Electronic Document Management System with a Distributed Structure

121

In distributed databases, data can be distributed geographically or functionally [4]. A

distributed database system is a network of databases where data is stored in multiple physical

or logical locations [5]. In general, when a query is received by the system, the response is

generated across all databases or by routing it to specific databases depending on the type of

query [4]. Database distribution allows for faster query execution and better error recovery by

distributing large amounts of data across multiple physical databases [2,6].

Figure 1. Organization of special-purpose distributed databases

There are two main concepts in distributed database management:

-Replication process

In this method, the data available in each database is copied to two or more different

databases. If all the available data is copied to all databases, it is called a fully replicated system.

Data replication is a method that increases the durability and consistency of databases. Database

consistency is the fact that when users access any database node in the system, the same query

produces the same result on each node. At the same time, replication is an effective factor in

ensuring the security of databases. Thus, data deleted or lost in one database can be restored

through other replications. The replication process ensures that data is constantly synchronized

and copied with other databases [6].

Advantages:

- Minimizes loss by increasing overall data availability.

- It causes queries to be answered faster in the system, as queries are executed in parallel in

distributed databases compared to a central database , so they are answered faster.

- When users send requests to different databases, the system becomes more resilient, as lost

data is resynchronized and restored through other databases.

- It speeds up the process of reading from databases, as the request entering the system is

redirected to the nearest node, minimizing network delays.

Disadvantages:

- The data in the databases must be constantly synchronized and updated, which increases

the traffic load of the databases.

Vagif Gasimov, Mammadzada Nargiz

122

- Any changes made to any database node must be made to other databases as well, otherwise

inconsistencies may arise between databases.

- Updating data causes delays, as each change is executed taking into account other databases.

- If the synchronization process is not performed correctly, inconsistencies arise between

databases.

- Fragmentation process:

In this method, data fragments are distributed across different databases. When these

fragments are combined, the original whole data is obtained again. Since the data is simply

distributed in the fragmentation process, there is no consistency problem between them.

Advantages:

- It increases the productivity and performance of the system by allowing the parallel execution

of multiple queries (especially for queries related to different fragments) [7].

- Storing the data that each center uses most frequently in databases located in close

geographical locations leads to more efficient searches[2,4].

- Ensures that databases are more secure. As a result, if one node is attacked by hackers, not all

of the data can be accessed, which ensures that the data is more secure overall [7].

Disadvantages:

- Distributing data across multiple databases and making queries on them more complex.

- The performance of applications depends on the speed of the network connecting the

databases.

- Complexity of query optimization

The fragmentation process is divided into two parts in terms of the distribution of elements:

Horizontal fragmentation and vertical fragmentation. Horizontal fragmentation is basically

the division of tables used in databases into rows and storing them in different databases (Figure

2). Vertical fragmentation is the process of dividing tables used in databases into columns or

managing each table by storing it in a different database (Figure 3). To improve the performance

of databases for enterprises, a hybrid distributed database structure is often used. Since both

replication and fragmentation processes are used in databases, it allows ensuring the durability,

consistency, and security of databases.

2. Building distributed databases for medical records

Databases for medical document databases should be structured as follows:

- The data generated in each branch should be stored in its own database. Thus, the data of

those who apply to the branch is stored in the database of that branch and the results of the

existing functions in each branch are stored in the database of that branch. This ensures both

geographical and functional division of the databases.

- The data generated in each branch is also transmitted to the central database and copied

there. The central database can be one or more than one. This structure makes the databases

more secure by ensuring that they are more resistant to loss.

Architecture and Model of a Special-Purpose Electronic Document Management System with a Distributed Structure

123

- During a search in one branch, information not available in the current database is generally

queried through other branches or through the central database.

Figure 2. Database replication with horizontal distribution: how data within a table is distributed

row by row and replicated at a central node

Figure 3. Database replication with vertical distribution: distribution of tables created in each node

according to their functions across nodes and replication at the central node

3. Current methods used in database replication

The main issue in the replication process is the correct management of copying information

generated in one database to other databases. Since a small error that may occur in the

organization of work can lead to a violation of consistency between databases or a loss. There are

two types of approaches to solving this problem:

1. Master-Slave approach or leader replication: Here, synchronization occurs by

transmitting every change made on the master to the slave database(Figure 4). In this method,

write operations are mostly performed on the master ,while read processes are performed from

the slave databases [8].

2. Another replication management approach is leaderless replication, where each database

is considered a master, where each database can perform read and write operations, and where

each database communicates with other databases to ensure consistency among themselves[6,9].

Vagif Gasimov, Mammadzada Nargiz

124

Figure 4. Master-Slave structured replication control method[11]

Both approaches have their own advantages and disadvantages:

Advantages of led replication:

1. Centralized management: The replication process is managed from a single center, which

ensures easy management of requests and authorization processes.

2. Consistency: Leader-based replication is a very powerful method for ensuring

consistency between databases, and in such systems, consistency is guaranteed to be high. Here,

writes made to the leader are propagated to its followers, ensuring that all followers share the

same data as the leader.

3. Simplicity: Configuration and management in leader-based replication are simpler than

in the leaderless approach.

Advantages of leaderless replication:

1. High availability: In this method, since each of the system's databases participates in both

write and read processes, the system's durability is significantly higher. Thus, in leader-managed

replications, if the leader database fails, the system stops writing operations until another leader

is elected.

2. High durability of database writes. In leaderless replication, the write process is more

durable because it can be performed on any node in the system[9].

3. Load distribution: Through replication, data can be distributed to different geographical

locations, so that requests to the system can be made over nearby locations, which supports

increased performance[9].

There are many methods created to date for both approaches:

Several algorithms are used for data replication in distributed databases, and the choice of

algorithm depends on factors such as consistency requirements, network conditions, and specific

characteristics of the distributed system. Commonly used replication algorithms are as follows:

Architecture and Model of a Special-Purpose Electronic Document Management System with a Distributed Structure

125

Primitive n -type replication:

In this approach, one node is designated as the primary node and the others are backup

nodes. All write operations go to the primary node and the changes are then replicated to the

backup nodes [8].

Voting-based Replication:

In this method, data written to one or more replicas is voted on among them to be replicated

to other nodes. If there are n replicas, then data accepted by at least n/2+1 majority votes is

written to the databases, achieving consistency[6].

Version vectors:

A version vector helps to know the versions of data stored in distributed databases and to

track replication and consistency between them with these vectors. Along with consistency, it

also helps to detect conflicts that may occur in the system[10].

Anti-Entropy Protocol:

This protocol performs periodic comparison and reconciliation of data between replicas to

ensure consistency[6,11].

CRDTs (Conflict-Free Replication Data Structures):

CRDTs are data structures designed to be replicated across distributed nodes without the

need for a centralized coordinator[12].

They ensure consistency by allowing simultaneous updates without conflicts.

4. Algorithm for managing replications in special-purpose databases

In the proposed model that ensures the distribution of medical documents between

branches, the database located in each branch not only stores its own data, but also synchronizes

with the central database, preventing data loss. In this system, the writing and reading process

can be performed in each database. And this makes the system compatible with the leaderless

replication model, despite the fact that it is synchronized with the central server. Here, a vector of

versions that are interconnected with each other is used to manage replications.

Unlike special-purpose databases, let's initially look at the transaction version-based replica-

tion management method for managing n number of replications. Let's assume that each of the n

number of databases performs the write process separately. Here, after each write operation, the

changes must be synchronized with other databases. For the synchronization process, initially,

each write transaction query rows (sql queries) are added to a table called “Transactions” in each

database. The structure of the Transactions table reflects whether the rows are transactions and

the columns are whether those transactions have been executed in n number of databases. And

initially, all cells have the value 0. In whichever database the query is executed, the value 1 is

written to the cell located at the intersection of the row and column corresponding to the query

and that database in that table. If a database is down (down) and then restored (up), it takes the

data in this Transactions table from other databases and combines them and executes them in the

appropriate sequence on the current node. The advantage of this method is that the databases

simply check the transaction tables in all databases with each other, which does not check

whether all the data in each database is synchronized or not (as in the Snapshot method), which

helps to perform the synchronization process more easily . Another issue in managing

replications is the conflicts that may arise between them. Thus, when writing to the same data on

Vagif Gasimov, Mammadzada Nargiz

126

two or more database nodes, conflicts arise between the values of the same data between these

nodes, which leads to the problem of which data should be taken as the basis during

synchronization. For managing replications, it is necessary to compare the synchronization status

of transactions in the databases and to compare the versions of the changed data. Let's take a

closer look at the above method:

Let's imagine that there are 4 replication databases in the system. A Tr1 transaction is entered

for a write operation to database 1. In this case, this transaction is initially added to the

transaction table of the current database and, as soon as the transaction is executed here, it is

assigned to the cell 1 located at the intersection of Db1 and Tr1 in that table (where Dbn represents

the database on node 1). Then, a synchronization request is sent from this database to other

databases. If each of the remaining 3 databases is up, this Transaction is added to their tables

and, as soon as it is executed there, it is assigned to the corresponding cell 1 in that table. During

the execution process of 1 in each database, information about this is sent to other databases, and

in each sent database, to reflect the execution of this Transaction in other databases, this

transaction is assigned to the corresponding cell 1 in the Transaction table according to the

database execution. And finally, whichever database executed the query last, after all databases

have executed this query, this transaction row is deleted from all tables. Thus, only queries for

which the synchronization process has not been completed remain in this transaction table.

a) The state of the databases before synchronization

b) State of databases after synchronization

Figure 5. Description of the method of leaderless management of replications in a distributed database

Database 1 Database 2

Db1 Db2 Db3 Db4 Db1 Db2 Db3 Db4

Tr1 1 0 1 0 Tr1

Tr2 1 0 0 0 Tr2

Tr3 Tr3

Tr… Tr…

Trn Trn

Database 3 Database 4

Db1 Db2 Db3 Db4 Db1 Db2 Db3 Db4

Tr1 1 0 1 0 Tr1

Tr2 Tr2

Tr3 Tr3

Tr… Tr…

Trn Trn

Database 1 Database 2

Db1 Db2 Db3 Db4 Db1 Db2 Db3 Db4

Tr1 1 1 1 1 Tr1 1 1 1 1

Tr2 1 1 1 1 Tr2 1 1 1 1

Tr3 Tr3

Tr… Tr…

Trn Trn

Database 3 Database 4

Db1 Db2 Db3 Db4 Db1 Db2 Db3 Db4

Tr1 1 1 1 1 Tr1 1 1 1 1

Tr2 1 1 1 1 Tr2 1 1 1 1

Tr3 Tr3

Tr… Tr…

Trn Trn

Architecture and Model of a Special-Purpose Electronic Document Management System with a Distributed Structure

127

Let's say Db2 and Db4 are down. A transaction enters Db1 and is sent to the others for synch-

ronization. In this case, the values in the Transaction table in Db1 and Db3 will be Tr1{1,0,1,0},

respectively. Then, when Db4 becomes down, another Tr2 transaction enters the system. In this

case, the only up database Db1 will have Tr1{1,0,1,0} , Tr2{1,0,0,0} . Then, as soon as each down

database becomes up, it synchronizes the Trs from all other databases to its Transaction table

and, as each one is executed, it sends information about this to the other up databases as well as

its own database. And thus, the databases synchronize with each other and after

synchronization, the values corresponding to the transactions in each database take the status

Tr1{1,1,1,1} , Tr2{1,1,1,1} . The worst case scenario that can occur in the transaction response

process is that all down databases are up while other up databases are down. Then, when the

databases are up, there is a problem of confusion about which transaction is executed in which

sequence. To prevent this, the initial execution date for each transaction in the Transactions table

(the date that reflects the first execution of the transaction in any of the databases) is recorded in

front of each transaction in the Transactions table. When this situation arises, the transaction

dates are executed sequentially, and consistency and correct sequence will be preserved. Another

issue in the replication synchronization process is conflict management. If two databases

perform a write operation on the same data at the same time, then during synchronization, there

is confusion about which data will be taken as the basis and which will be copied to the others. In

this case, this issue is solved to some extent with the execution date of the transactions. In this

method, the execution date of the transactions on the same data is selected as the basis and

synchronized with other databases. In the transaction table, if all values for each transaction are

1, then the information about the execution of that transaction is deleted from the transaction

table in the database of each node. This process is checked in the database of the last

synchronized node and sends information about the deletion to other databases. The advantage

of this method is that the system is more durable, so even if only 1 of the n databases responds to

the server, the system can continue to work. An example of the implementation of these

processes is illustrated in Figure 5.

It was noted that in the database structure shown above for special-purpose databases,

replications are performed only on the central database. Although the proposed synchronization

process was considered for n number of databases , this method can also be easily applied to

databases without a leader and replicated only on a central server.

5. Conflict management solutions in organizing leaderless replications

One of the main problems in managing leaderless replication is the occurrence of conflicts.

Thus, if two different nodes perform operations on the same data at the same time, or if two

different nodes make changes to the same data during a period of time when the connection

with each other is lost, two different versions of the same data will exist when the connection is

restored. Various methods have been implemented to prevent such situations to date.

If an internet connection is restored on a node that has lost connection to other nodes, the

following methods are available to balance the difference between them:

1. Last Write Wins: This method provides authentication between nodes by providing a

timestamp for each transaction that occurs, determining which transaction came last.

2. Conflict-free Replicated Data Types: A CRDT is a data structure that can successfully

merge update operations.

Vagif Gasimov, Mammadzada Nargiz

128

3. Manual intervention: In some cases, conflicts between databases can be resolved by

manually intervening by analyzing the error that occurred.

With the help of these methods, databases can be identified and consistency between them

can be ensured.

In databases intended for medical documents, the use of time stamps is considered

appropriate for resolving conflicts. Thus, during the execution of each transaction in each node,

the IDs of the affected objects are collected in a table using triggers and stored in the nodes. Later,

when the nodes exchange information about the transactions, the time stamp reflecting the

transaction and the execution time of the transaction and the ID of the affected object are

compared. To ensure the accuracy of the time stamp, each node must use online international

time indicators and the time indicators must be synchronized at certain time intervals when

there is an Internet connection. If two separate nodes make changes to an object with the same ID

without informing each other, the first or the last one among them is selected and sent to all

nodes, and the transaction that is not selected is rolled back on the node where it was executed.

The algorithmic sequence of this process is as follows:

For simplicity, let's look at the synchronization process between two nodes, A and B:

1. Both nodes that are disconnected from each other retain the transactions executed on

them until the synchronization process. ∑ 𝑇𝑟𝑖
𝐴and ∑ 𝑇𝑟𝑗

𝐵

2. Between them is restored, the transactions in them are combined with hash-structured

sets of object IDs: 𝑇𝑟𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
 = 𝐻𝑎𝑠ℎ𝑆𝑒𝑡𝑏𝑦 𝑂𝑏𝑗𝑒𝑐𝑡 𝐼𝐷(∑ 𝑇𝑟𝑖

𝐴+∑ 𝑇𝑟𝑗
𝐵)

3. 𝑇𝑟𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
 The timestamp for each object is selected for each of the initial incoming

requests, and the rollback process is performed on the database where the other request was

executed, and the newly selected execution request is executed on all nodes.

As a result, existing methods for managing the load of distributed structured special-

purpose databases, both fragmentation and functional and geographical distribution of data

between databases, as well as organizing their replication to increase the durability of databases,

were reviewed, and appropriate methodologies and algorithms were developed for such special-

purpose databases.

Conclusion:

The article examines the advantages of organizing databases in a distributed manner for

medical documents, and develops their structure in a manner appropriate to the purpose. The

methods used for replication, fragmentation, and conflict resolution of databases, which are the

main issues for distributed databases, are examined and developed in a manner appropriate for

medical documents. The structures formed aim to increase system performance, increase file

availability, and increase system security by minimizing losses.

Architecture and Model of a Special-Purpose Electronic Document Management System with a Distributed Structure

129

REFERENCES:

1. Haux, R. (2006). Health information systems – past, present, future. International Journal of Medical Informatics ,

75(3-4), 268-281. DOI: 10.1016/j.ijmedinf.2005.08.002 (Health information systems, geographic presence)

2. Özsu, MT, & Valduriez, P. (2011). Principles of Distributed Database Systems (3rd ed.). Springer. (Distributed DB

fundamentals, fragmentation, query speed, data locality)

3. Tanenbaum, AS, & Van Steen, M. (2007). Distributed Systems: Principles and Paradigms (2nd ed.). Prentice Hall.

(Distributed systems, availability, fault tolerance, replication)

4. Özsu, MT, & Valduriez, P. (2011). Principles of Distributed Database Systems (3rd ed.). Springer. (Fragmentation types,

replication basics, distribution strategies)

5. Bernstein, PA, & Newcomer, E. (2009). Principles of Transaction Processing (2nd ed.). Morgan Kaufmann.

(Distributed DB definition, replication, consistency)

6. Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable

Systems . O'Reilly Media. (Replication (with/without leader), consistency models, fragmentation (partitioning), conflict

resolution (LWW, CRDT), quorum, anti-entropy, availability)

7. Navathe, SB, Elmasri, R. (2016). Fundamentals of Database Systems (7th ed.). Pearson. (Fragmentation, performance,

security aspects)

8. Kleppmann, M. (2017). Chapter 5: Replication. In Designing Data-Intensive Applications . O'Reilly Media. (Master-

Slave/Primary-Backup replication, advantages, limitations)

9. Kleppmann, M. (2017). Chapter 5: Replication. In Designing Data-Intensive Applications . O'Reilly Media. (Multi-

Leader/Leaderless replication, advantages, conflicts, high availability)

10. Parker Jr, DS, Popek, GJ, Rudisin, G., Stoughton, A., Walker, BJ, Walton, E., Chow, JM, Edwards, D., Kiser, S., &

Kline, C. (1983). Detection of mutual inconsistency in distributed systems. IEEE Transactions on Software

Engineering , SE-9(3), 240-247. DOI: 10.1109/TSE.1983.236733 (Concept of version vectors) - Or Kleppmann (2017)

explains this concept.

11. https://diadem.in/blog/how-to-configure-mysql-master-slave-replication/

12. Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011). Conflict-free replicated data types. Proceedings of the

13th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS'11) , 386-400. DOI:

10.1007/978-3-642-24550-3_29 (Basics of CRDTs) - Or Kleppmann (2017) explains this concept.

