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This paper considers the issue of assessing the security of a key exchange 

protocol based on matrix algebra. To protect the confidentiality of information, it 

is important that the keys are exchanged securely. This can be done by using 

methods such as encrypted key transmission, creation of dedicated secure 

channels, formation of a common key between parties without exchanging secret 

information using public key algorithms, etc. The paper analyzes the security of 

the protocol implemented using the approach based on non-invertible matrices 

against linear algebra and brute force attacks, shows that the use of non-

invertible matrices increases the security of the system, and also evaluates the 

consumption of computing resources. The results confirm that this approach can 

be used as a secure and practical method of key exchange. 
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1. INTRODUCTION 

The main problem of the symmetric encryption method, which is one of the most common 

methods of protecting the confidentiality of information, is the reliable delivery of the secret key 

to the parties. To solve this problem, various methods are used, such as sending the key in 

encrypted form, creating separate protected channels, delivering the key by courier, forming a 

common key between the parties without exchanging secret information using public-key 

algorithms, etc. The protocol created based on the Diffie-Hellman algorithm is a clear example of 

the public-key encryption method [1-2]. This algorithm allows two parties (sender and receiver) 

to create a common secret key using an open channel. The basis of the Diffie-Hellman key 

exchange protocol is one-way functions, that is, functions that are simple to calculate in one 

direction, but require relatively large resources to calculate in the opposite direction. The secret 

key created based on the key exchange protocol can later be used to encrypt data.  

Another interesting method for generating a shared secret key is based on matrix algebra. In 

general, the essence of this method is based on building a public-key exchange process based on 

matrices whose inverse cannot be calculated. It is known that the product of two matrices can be 

calculated only if the number of columns in the first matrix is equal to the number of rows in the 

second matrix. In the special case, if both matrices are square matrices of the same size, then their 

product can always be found. 

When matrices A and X satisfying these conditions are multiplied together, the matrix C of 

the corresponding size is obtained: 
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A∙X=C      (1) 

If C and A are known, the matrix X can be calculated based on the following expression:

  

    𝑋 = 𝐶 ∙ 𝐴−1      (2) 

Here, the matrix 𝐴−1 is the inverse matrix of the matrix A. If we denote the determinant of 

the matrix A by detA, and the minor by Anm (i,j=1,2,...,n), the following expression is used to find 

the inverse matrix: 

    (3) 

As can be seen, if detA=0, it is necessary to perform the division by zero operation, which 

leads to uncertainty, that is, it is impossible to calculate the inverse of the matrix. In other words, 

although it is always possible to find the product of two matrices when one of the factors and the 

product are given, in some cases it is impossible to calculate the other factor. This is because if the 

known factor is a matrix that does not have an inverse, then for the other factor there are 

infinitely many solutions that satisfy equation (1). It is this property of matrices that allows us to 

create a one-way function with their help [3-4]. In the studies conducted by the authors in the 

literature [2], a key exchange protocol based on non-invertible matrices was proposed. In this 

paper, the issue of assessing the security and efficiency of this protocol is considered. 

 The essence of the key exchange protocol based on non-invertible matrices given in [2] is 

as follows: 

1) the parties (Parties 1 and 2) who want to exchange information choose a common square 

matrix C with determinant equal to 0; 

2) The first party chooses an nxn matrix A and a coefficient q, and the second party chooses 

a matrix B and a coefficient p. The first party calculates the product SA1= 𝐴 ∙ 𝐶𝑞 and sends it to 

the second party, and the second party calculates the product SB1= 𝐶𝑝 ∙ 𝐵 in a similar manner to 

the first party. 

3) The first party chooses an nxn matrix M and multiplies the product 𝑀 ∙ 𝐶𝑞 by the matrix 

SB1 obtained from the second party from the left, and sends the resulting matrix SA2= 𝑀 ∙ 𝐶𝑞 ∙ 𝐶𝑝 ∙

𝐵 to the second party. The second party selects an nxn matrix N and sends the matrix SB2= 

𝐴 ∙ 𝐶𝑞 ∙ 𝐶𝑝 ∙ 𝑁 obtained by multiplying the product 𝐶𝑝 ∙ 𝑁 by the matrix SA1 from the right to the 

first party. 

4) The first party multiplies the product 𝑀 ∙ 𝐴−1 from the second party to the matrix SB2 from 

the left, and the second party multiplies the product 𝐵−1 ∙ 𝑁 from the first party to the matrix SA2 

from the right. Both parties get the same result: S= 𝑀 ∙ 𝐶𝑞 ∙ 𝐶𝑝 ∙ 𝑁. The resulting matrix is used as 

a secret key that the parties jointly form. 

2. LINEAR ALGEBRA-BASED SECURITY ANALYSIS 

Since the intermediate keys, SA1 and SA2, are obtained from the product of the matrix C by 

another matrix, they must be non-invertible matrices (the product of non-invertible and inverse 

matrices is equal to the non-invertible matrix). Therefore, it is not possible to calculate the matrix 
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𝑀 ∙ 𝐶𝑞 from the equation SA2 = 𝑀 ∙ 𝐶𝑞 ∙ SB1. Because the number of matrices 𝑀 ∙ 𝐶𝑞 satisfying this 

equation is greater than one. If the matrices M and N are not used in the protocol, the equation 

SA2= 𝑀 ∙ 𝐶𝑞 ∙ 𝐶𝑝 ∙ 𝐵 takes the form SA2 = 𝐶𝑞 ∙ SB1. Then the number q can be calculated by checking 

all possible values until the equation SA2 = 𝐶𝑞 ∙ SB1 is satisfied. The number p can be calculated in 

the same way. However, when the matrix M is included in the equation, it is necessary to find 

not only the number q, but also the matrix M. This increases both the number of cases to be 

checked and the number of solutions to the equation SA2= 𝑀 ∙ 𝐶𝑞 ∙ 𝐶𝑝 ∙ 𝐵. Thus, it becomes 

extremely difficult to verify the correctness of the solution found. By the same logic, the 

importance of including the matrix N can be clearly shown. 

3. KEY FİELD ANALYSİS 

The brute force resistance of the proposed method directly depends on the number of non-

inverse matrices that can be used. To calculate this number, let us assume that the elements of 

the matrix Z with any inverse take values from 0 to 999. Then the first column of the matrix Z can 

take (1000n – 1) different values (not every element in the first column can be equal to 0 at the 

same time). The second column must be outside the one-dimensional space formed by the first 

column. That is, if we denote the first column by a1, then the second column must be different 

from a1, 2 * a1, 3 * a1, ... , 1000 * a1. Therefore, a2 can take (1000n – 1000) values. The third column 

must be outside the space formed by the vectors a1 and a2. That is, it can take (1000n – 10002) 

values. Continuing in a similar way, we see that the value of the vector ai is (1000n – 1000i). 

Taking these into account, we can see that the number of possible values of the matrix Z is (1000n 

– 1) * (1000n – 1000) * (1000n – 10002) * ... * (1000n – 1000n – 1). If the elements of the matrix Z can take 

the value “m”, then the number of such matrices is (mn – 1) * (mn – m) * (mn – m2) * ... * (mn – mn – 

1). The number of non-invertible matrices is equal to the difference between the number of all 

matrices and the number of invertible matrices. Given that the number of all matrices is mn * n, the 

number of non-invertible matrices is equal to mn * n - (mn – 1) * (mn – m) * (mn – m2) * ... * (mn – mn – 

1). Table 1 shows the number of non-invertible matrices depending on the size of the matrix and 

the largest value of its elements. The results prove that the algorithm is quite strong against brute 

force cracking. For example, for matrices of size 4x4 and 5x5 with 4-digit elements, the numbers 

1060 and 1096 were obtained, which correspond to 200 and 319-bit numbers when represented in 

binary code. As can be seen, the key area of the algorithm is quite large, and if necessary, this 

area can be further increased by changing the size of the matrix and the range of values that its 

elements take. 
 

Table 1. The number of non-invertible matrices based on the matrix size and the maximum value of the element 

Matrix size 
Maximum value of the elements of the matrix 

99 999 9999 99999 

2 1.009 * 106 109 1012 1015 

3 1.009 * 1016 1024 1032 1040 

4 1.009 * 1030 1045 1060 1075 

5 1.009 * 1048 1072 1096 10120 

 

4. EVALUATION OF THE RESOURCES USED 

One of the main parameters evaluated is the determination of the time spent on key 

generation. As can be seen from the algorithm, a very large part of the resource is spent on 

calculating the product of matrices. The size of the matrices and the maximum value that the 
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elements can take significantly affect the time spent on calculating the common key. Naturally, 

the characteristics of the computer on which the program is executed also play a major role here. 

The results obtained by implementing the program designed for the algorithm under 

consideration on a computer with the parameters CPU: Intel® Core™ i5-8265U CPU @ 1.60GHz, 

RAM: 8 GB are given in Table 2. As can be seen, the results are quite high for such a process and 

allow calculating a separate key for each information exchange session. 
 

Table 2. Time spent on key formation (in seconds) 

Matrix size 
Maximum value of the elements of the matrix 

100 1000 10000 100000 1000000 

3 0.002627849 0.002312302 0.002815985 0.002208733 0.002175283 

4 0.006254410 0.006436371 0.006414818 0.006233954 0.006390404 

5 0.056668591 0.054777193 0.059532523 0.058203577 0.057142686 

6 0.114728498 0.118162989 0.119587588 0.120708131 0.124338245 

7 0.230506992 0.233087420 0.230650210 0.231170415 0.254934334 

 

5. CONCLUSION 

The article evaluates the security of the protocol for generating a shared secret key based on 

non-invertible matrices. The evaluation is based on linear algebra and key space analyses. In the 

presented article, the time spent on implementing the protocol based on the application of non-

invertible matrices is also evaluated. The analyses have shown that the calculation of the shared 

secret key by the considered method has high resistance to linear algebra and brute force attacks. 

The proposed approach, in addition to providing a high level of security for key exchange, has 

practical efficiency. In future work, it is planned to investigate and optimize wider application 

areas of the protocol. 
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