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Analyzing and visualizing scientific ensemble datasets characterized by high
dimensionality and structural complexity remains a significant challenge. While
dimensionality reduction methods and autoencoders are widely used for feature
extraction, their performance often degrades in high-dimensional settings. In this
work, we propose an enhanced autoencoder framework that integrates clustering
and contrastive loss functions into the latent space to improve the interpretability
and visualization of scientific ensemble data. Clustering is guided by a soft
silhouette score, encouraging compact and well-separated latent representations. To
address the presence of unlabeled data, EfficientNetV2 is employed to generate
pseudo-labels for partially unlabeled ensembles. The model is trained by jointly
optimizing reconstruction, clustering, and contrastive objectives, resulting in
improved grouping of similar samples and clearer separation of distinct structures
in the latent space. UMAP is subsequently applied to the learned embeddings to
produce two-dimensional visualizations, which are quantitatively evaluated using
silhouette scores. We evaluate multiple autoencoder variants on two scientific
ensemble datasets: subsurface channel structures generated via Markov chain
Monte Carlo simulations and droplet-impact dynamics on a liquid film. The results
show that incorporating clustering or contrastive objectives yields marginal but
consistent improvements over baseline autoencoders.

1. Introduction

In recent years, the growth of high-dimensional scientific ensemble datasets has presented both
opportunities and challenges for data analysis and visualization [1]. Scientific ensembles,
characterized by their complex and multi-dimensional nature, contain valuable insights that can
assist in decision-making processes across various domains, from climate modeling to healthcare
diagnostics [2]. However, extracting meaningful features from these datasets remains a difficult

task due to their complexity.

To make these complex ensemble datasets more understandable, dimensionality reduction
techniques can be applied. However, these techniques struggle to uncover the structures in high-
dimensional datasets. Thus, we first apply feature extraction through the use of (variational)
autoencoders. These models extract the most relevant features from the datasets, after which
dimensionality reduction techniques can be used to obtain a more intuitive visualization.
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Combining these two methods has shown promising results, but we hope to achieve better
clustering within this visualization [3].

In this paper, we propose a novel approach for clustering scientific ensemble datasets by
combining the strengths of autoencoder-based feature extraction with a dedicated clustering and
contrastive loss function. Our method aims to extract relevant features of scientific data while
simultaneously encouraging the forming of distinct clusters in the latent space. By jointly
optimizing the reconstruction objective during training as well as the cluster separability
enforced by either the clustering or contrastive loss, our approach offers a framework to obtain a
better understandable visualization.

We implement a soft silhouette score, which is a differentiable version of the silhouette score.
This score is implemented as a clustering loss alongside the reconstruction loss of a (variational)
autoencoder during training, ensuring that the data will form more compact clusters while also
preserving the original data’s information. This clustering loss will also be compared to a
contrastive loss function. Contrastive loss aims to bring instances of the same class closer
together while pushing apart the instances of different classes, ensuring that similar data will be
grouped in the latent space. This clustering during training can be performed on mostly
unlabelled datasets because EffNetV2 will be used to first train the model on the manually
labelled part of the ensemble datasets, after which pseudo-labels for the unlabelled part of the
datasets will be generated, making this a semi-supervised problem.

Once the training is finished, we will perform dimensionality reduction to further reduce the
latent space to a 2D visualization by performing dimensionality reduction: specifically by utiliz-
ing UMAP. The resulting visualizations will be evaluated by their silhouette score and compared
to similar models, with and without a clustering or contrastive loss. In our experiments, we used
two ensemble datasets: Markov Chain Monte Carlo and Drop Dynamics [4], [5].

In Section 2, we give a brief overview of related works. Afterwards, we describe the method-
ology used for this paper in Section 3. Then, we move on to the results and discussion in Section
4. We conclude our findings in Section 5. Finally, we discuss future works in Section 6.

This work is based on the master's internship project by Lennard Manuel titled “Autoencoder-
based semi-supervised dimensionality reduction and clustering for scientific ensembles” from
the University of Groningen [40].

2. Related Work

In this section, we briefly describe what research has been done previously in the fields of
autoencoder-based feature extraction, deep clustering, and contrastive learning.

Autoencoder-based Feature extraction. Autoencoders have become instrumental in the field of
feature extraction due to their ability to learn efficient, compressed representations of high-
dimensional data. Ardelean et al. propose autoencoders as a feature extraction method for spike
sorting, the process of grouping spikes of distinct neurons into their respective clusters [6].
Autoencoders are also widely used in computer vision. Nayak et al. use a deep autoencoder to
help detect brain tumors in medical images [7]. Chen et al. propose a convolutional autoencoder
to help in detecting and analyzing long nodules [8]. Solomon et al. use autoencoders to develop a
face verification system [9]. Furthermore, Variational Autoencoders are also useful in this
process. Tian et al. developed the Pyramid-VAE-GAN network to assist in image inpainting [10].
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More recently, Yin et al. introduced ENTIRE, an autoencoder-based framework that extracts
structure-aware feature representations from time-dependent volumetric data and combines
them with rendering parameters to accurately predict volume rendering time, enabling dynamic
parameter adaptation and load balancing in visualization pipelines [37].

Deep clustering. Deep clustering refers to the process of integrating deep learning networks
with clustering meth- ods. It helps in transforming the input data such that clusters will try to
form within the latent space [11]. In the paper “Deep clustering using the soft silhouette score:
towards compact and well-separated clusters” Vardakas et al. introduce a probabilistic
formulation of the silhouette score to complement their autoencoders” reconstruction loss with a
clustering loss [12]. They use a Radial Basis Function model as a clustering network to predict the
probabilities with which they calculate the soft silhouette score. They show promising results on
the EMNIST datasets. Xie et al. propose the Deep Embedding Clustering (DEC) method, which
also optimizes both the reconstruction and clustering objective using deep neural networks [13].
They use the KL divergence as their clustering loss. Guo et al. adapt the DEC method and
develop the Improved Deep Embedding Clustering (IDEC) method [14]. This method
simultaneously optimizes the reconstruction and clustering objective during the training phase,
whereas DEC pre-trains on the reconstruction objective, after which it optimizes the clustering
objective. Yang et al. also propose their own method: the Deep Clustering Network (DCN) [15].
This method tries to optimize the clustering objective using k -means on the embedded space.

Contrastive loss. Contrastive learning is a deep learning technique that is effective in creating
separation between different classes. Zhou et al. for example propose a contrastive autoencoder
(CAE-AD) for anomaly detection in multivariate time series [16]. Luo et al. also combine
contrastive learning with an autoencoder to assist in out-of-distribution detection [17]. Lopez-
Avila et al. combine a denoising autoencoder with contrastive learning to help fine-tune their
transformer models [18]. Contrastive learning also has its place in the medical world: Cao et al.
propose ContrastNet, which combines prototypical contrastive learning with an autoencoder to
create an unsupervised feature learning network for hyperspectral classification [19].

Ensemble data analysis. Modern scientific simulations and measurements often generate large
spatio-temporal ensembles, where each member represents a different realization of the same
phenomenon under varying parameters or initial conditions. Extracting meaningful low-
dimensional structure from such ensembles is crucial for tasks such as uncertainty quantification,
pattern discovery, and interactive visualization. Autoencoder-based methods are particularly
well suited for this setting because they can learn compact latent representations that preserve
salient spatial and temporal structures while remaining flexible across different simulation
domains. In the context of ensemble visualization, autoencoder architectures have been
systematically evaluated as feature extractors and dimensionality reduction models for spatial
ensembles, with a focus on how architectural choices affect projection quality and the
expressiveness of the resulting embeddings [35]. These studies demonstrate that appropriate
encoder—decoder configurations can yield latent spaces in which ensemble members cluster
according to physically meaningful behaviors, thereby supporting downstream visual analysis
and clustering.

Beyond static dimensionality reduction, recent work has explored deep learning for learning
flow fields and reconstructing missing temporal information in ensemble data. FLINT introduces
a learning-based approach for flow estimation and temporal interpolation that reconstructs
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velocity fields and scalar quantities in 2D+time and 3D-+time ensembles, enabling high-quality in-
between time steps without strong domain assumptions [34]. HyperFLINT extends this idea
with a hypernetwork that conditions on simulation parameters, improving generalization across
different ensemble configurations and supporting parameter-aware interpolation quality [33].
Together, these methods illustrate how neural networks can capture both spatial and temporal
coherence in ensembles and use this knowledge to fill temporal gaps, generate dense time
sampling, and support fluid, artifact-free animation and analysis [38].

These developments are part of a broader trend toward machine-learning-driven ensemble data
analysis in scientific visualization. A recent comprehensive study on machine learning for
scientific visualization discusses autoencoder-based dimensionality reduction, learning-based
flow estimation, and hypernetwork-based adaptation as complementary building blocks for
analyzing complex spatio-temporal ensembles [36]. In parallel, autoencoders and related deep
architectures have been applied to other ensemble-related tasks, such as learning low-
dimensional probabilistic representations of ensemble forecast fields and leveraging variational
autoencoders for ensemble visualization and uncertainty exploration in meteorology. The
usefulness of such learned latent representations is further highlighted by applications beyond
“pure” data analysis. For example, ENTIRE uses deep features derived from volumetric data
and camera parameters to predict volume rendering time, enabling dynamic parameter
adaptation and more stable interactive performance for time-dependent volume data [37].
Collectively, these works underline that autoencoder-based representations and related deep
learning techniques provide a powerful and versatile foundation for ensemble data analysis,
supporting not only visualization and clustering but also performance prediction and system-
level steering in complex simulation workflows.

Recent advances in Artificial Intelligence. Recent advances in large language models (LLMs)
and foundation models have begun to influence scientific data analysis workflows, including
ensemble-based visualization and simulation analysis. While LLMs are primarily developed for
language tasks, their underlying architectural and system-level innovations—such as attention
mechanisms, scalable training paradigms, and modular model composition—are increasingly
relevant for handling large, heterogeneous scientific datasets. In particular, LLM-driven
interfaces and multimodal models show promise for assisting exploratory analysis, metadata
reasoning, and interactive steering of ensemble simulations by coupling learned representations
with semantic context. As scientific datasets continue to grow in size and complexity, real-time
optimization and scalability have become central concerns. Techniques such as mixed-precision
training, low-rank adaptation (LoRA), and model pruning significantly reduce computational
overhead while preserving model performance [39]. System-level frameworks including vLLM
and DeepSpeed further enable efficient training and inference at scale, while sparse expert
architectures such as Switch Transformers demonstrate how conditional computation can reduce
resource usage without sacrificing expressiveness. Complementary approaches based on
reinforcement learning allow models to adapt their complexity dynamically in response to
available computational budgets. Moreover, distributed strategies such as federated learning
and ZeRO improve scalability and collaboration across institutions handling large-scale
ensemble datasets. Finally, emerging work on agentic Al systems—in which autonomous agents
coordinate learning, inference, and analysis tasks—opens new directions for ensemble data
processing. When combined with containerization technologies such as Docker, these agents can
be deployed as modular, reproducible components that manage data ingestion [41, 42], model
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execution, and visualization pipelines in a flexible and scalable manner, supporting robust,
system-level integration of learning-based ensemble analysis.

3. Methodology

In this section, we discuss and explain all steps of the pipeline of our approach, which is shown
in Figure 1. First, the ensemble data is preprocessed, after which we generate the pseudo- labels
using EffNetV2. Following this, feature extraction is performed with the (variational)
autoencoders using reconstruction loss combined with either clustering or contrastive loss. Then,
the latent space is projected to a 2D space using UMAP, which is then evaluated by their
silhouette scores. Then, all the results are compared.

Preprocessing &
Pseudo-label
generation
(subsection 3.1)

|

Feature extraction with
clustering & contrastive loss

(subsections 3.2, 3.3, 3.4)

input latent reconstructed
image x space image x’

:

k encoder decoder J

UMAP Projection
(subsection 3.5)

Evaluation }

Figure 1: Pipeline of the developed method.

3.1 Scientific ensemble datasets

In this project, we consider two ensemble datasets. The first is the Markov chain Monte Carlo
(MCMC) ensemble dataset, which depicts channel structures in soil [4]. This ensemble contains
95K images. The images are monochrome and have a resolution of 50 x 50. An example of the
MCMC images is shown in Figure 2.
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Figure 2: Markov chain Monte Carlo images examples.

Figure 3: Drop dynamics images examples.

The second ensemble dataset is the drop dynamics (DD) ensemble, which studies the impact of a
droplet with a film [5]. These images are also monochrome and have a resolution of 160x224.
This ensemble contains 135K images. An example of the DD images is shown in Figure 3.

For both ensembles, a small subset of the datasets is labelled manually. For the MCMC ensemble,
2.5K images are labelled, and 7.2K for the DD ensemble. This labelling was done by observing
the different behaviour types shown by the images. For MCMC, there are five different
categorical classes. For the DD ensemble, there are seven different categorical classes: bubble,
bubble-splash, column, crown, crown-splash, splash, and drop.

Because the ensemble datasets are only partially labelled, we use an EfficientNetV2 model to
train on this part, and then generate pseudo-labels for the unlabelled subset of the ensembles,
making this a semi-supervised problem. EfficientNetV2 is an image classification convolutional
network, and it is known for its small size, speed and performance [20]. For this project, a subset
of 30K images for the MCMC ensemble will be used, and 26K images for the DD ensemble. Both
datasets are normalized to zero mean and unit standard deviation.

3.2 Architecture

In this subsection, (variational) autoencoders will be explained in detail, and the architectures
used for this project will be described.

Autoencoders. Autoencoders and (3)-variational autoencoders will be used for this project. An
autoencoder (AE) is a type of artificial neural network that is often used for unsupervised
learning problems [21]. An autoencoder aims to learn a representation (encoding) for a dataset
by training the network to reconstruct the original input as accurately as possible. It consists of
two main parts: an encoder and a decoder.

The encoder compresses the input data into a lower-dimensional representation, also known as
the latent space or encoding. It typically consists of one or more hidden layers that progressively
reduce the dimensionality of the input data, mapping it to a lower-dimensional representation.
The encoder’s output represents a compressed version of the input data, capturing its essential
features. Mathematically, an encoder with one hidden layer can be expressed as z = o(Wx + b),
where z is the latent representation, o is the activation function, W is the weight matrix, x is the
input image, and b is the bias.

The decoder reconstructs the original input data from the encoded representation produced by
the encoder. It typically consists of one or more hidden layers that gradually expand the
dimensionality of the encoded representation back to the original input dimensionality. The de-
coder’s output should ideally closely match the input data, effectively “decoding” the
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compressed representation into a reconstructed version of the original input. Mathematically, a
decoder with one hidden layer can be expressed as x’ = 0'(W'z + b’), where X’ is the reconstructed
image, o’ is the activation function, W’ is the weight matrix, z is the latent representation, and b’
is the bias. The general structure of an autoencoder is shown in Figure 4.

input reconstructed
image x latent space image x’

[~ , [

Y Y

encoder decoder

Figure 4: Autoencoder general structure.

During training, an autoencoder is trained to minimize the reconstruction loss function that
quantifies the difference between the input data and the reconstructed output. In this project, the
Mean Squared Error is chosen as the loss function. Mathematically, MSE is expressed as
L, x) = llx = |2

Variational autoencoders. Variational autoencoders (VAE) are a type of autoencoder and are
similar to the previously explained autoencoders in many ways [22]. The key difference between
a VAE and a traditional autoencoder lies in how they handle the latent space representation. In a
traditional autoencoder, the encoder maps input data to a fixed-dimensional latent space, and
the decoder reconstructs the input data from this latent representation. However, in a VAE, the
latent space is probabilistic, meaning that instead of encoding data points to a specific point z in
the latent space, the encoder outputs the parameters of a probability distribution over the latent
space. Then, the decoder takes a sampled point from this distribution and generates a new
image. Because of VAEs nature of using a sample from the distribution, they can produce new
images. This can help in preventing overfitting, as the model learns a more general structure
from the image.

Furthermore, VAEs also add a regularization term to the loss function, called the Kullback-
Leibler (KL) divergence. The KL divergence encourages the learned latent space to approximate
a unit Gaussian distribution, helping to ensure that the latent space remains interpretable. The
training objective of a VAE is to maximize the Evidence Lower Bound (ELBO), which is
comprised of two parts:

Eq, (z1) [logpe(22)] — Dicr.(g(2|2)||po(2)), (1)
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where the prior distribution with a unit Gaussian distribution (zero mean and unit standard
deviation) and the probability distribution of the parameters u and o are outputted by the
encoder. This means that expected value is equal to the reconstruction loss, and the second part
is equal to the KL divergence, which measures the difference between the probability
distribution outputted by the encoder and the prior distribution. The ELBO (evidence lower
bound) needs to be minimized.

As in the paper “Evaluation and selection of autoencoders for expressive dimensionality
reduction of spatial ensembles” [3], the KL divergence is scaled according to the dimensionality
of the latent space according to the following formula:

dim(latent) @)
height - width’

where dim(latent) is the size of the latent space, and height and width are the height and width
of the input image. The general structure of a VAE is shown in Figure 5.

: tructed
input latent space Smiree
image x p image x

w o 0f ]

-/ / J
Y~ Y RV/J Y
encoder mean & latent decoder

std dev vector

Figure 5: Variational Autoencoder general structure.

A B-VAE is a type of VAE that adds the Lagrangian multiplier 3 which balances the recon-
struction accuracy and impact of the KL divergence factor [23]. Using the Lagrangian multiplier
 can help to create an even more expressive latent space. With a 3-VAE, the KL divergence
coefficient of Equation 2 is multiplied by this Lagrange Multiplier 3. This means that a 3 value of
1 means that it is equal to a VAE.

The architecture used for the AE and (3)-VAE is the same symmetric structure as in [3], meaning
that the decoder is reversed to the encoder. First, the resolution of input images is reduced by
half after all four convolutional layers. This is done by using a stride of 2. The kernel size for
convolution was set to 3, and the number of filters is equal to 64 with zero padding. As an
optimizer, Adam was used with a learning rate of 0.0005 [24]. The ReLU activation function was
used throughout with random weight initialization. ReLU is linear in the positive dimension but
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0 for any negative value [25]. Furthermore, the batch size used in this project is equal to 128. This
value was the largest Habrok could reliably handle without running into GPU memory issues.

3.3 Clustering loss

To enhance the performance of autoencoder-based clustering, we complement the reconstruction
loss with silhouette score as clustering loss. The silhouette score is a widely used clustering
quality metric, which measures how similar an item is to other items in the same cluster
(cohesion) as well as how different it is from items from other clusters (separation) [26]. The
silhouette score ranges from -1 to 1. A high value (close to 1) indicates that an item has good
separation from other clusters while also being similar to items from its cluster (good cohesion).
A low value (close to -1) indicates that the item has both bad separation and bad cohesion. The
silhouette score is defined as follows:

\_ b(i) —a(d)
@) = raz(a(), b))’ ®)

where a(i) is the mean distance of sample i to all the points in its own cluster, and b(i) is the mean
distance between i and the nearest cluster. Thus, to achieve a high silhouette score, a(i) must be
minimized, meaning that a point’s distance to the other points in its cluster must be low (good
cohesion), while b(i) must be maximized, meaning that the distance to other clusters must be
high (good separation).

However, we cannot simply implement the silhouette score as is, as the function needs to be
differentiable to ensure that backpropagation works. This is why we introduce the soft silhouette
score: a differentiable variant of the traditional silhouette score [12]. The soft silhouette score is
entirely implemented through tensor operations, ensuring its differentiability. We define the
clustering loss as follows:

Log=1-8y, (4)

where 5f is the soft silhouette score. 1 is subtracted from the soft silhouette score to ensure that
the clustering loss is in the range [0, 2], where 0 is the best achievable clustering loss. By adding
this clustering loss alongside the reconstruction loss Lrec, we ensure that the data will form more
compact clusters while also preserving the information of the original data. To strike a balance
between the clustering and reconstruction objectives, we introduce a clustering coefficient Acl to
scale the contribution of the clustering loss. By adjusting the coefficient of the clustering loss, we
control the emphasis placed on clustering relative to reconstruction during training. This
approach allows us to fine-tune the trade-off between clustering accuracy and reconstruction
performance. This gives us the following loss function:

E == ,C;—ec + /\d,cd (5)

34 Contrastive loss

Contrastive loss takes the vectors for a positive example and calculates its distance to an example
of the same class and contrasts that with the distance to negative examples [27]. The goal is thus
to bring instances with the same class closer together while pushing apart the instances with
different classes. It helps ensure that the positive examples are represented by similar vectors
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while negative examples are represented by dissimilar vectors. This is accomplished by
calculating the distances of the vectors with any distance metric. For this project, the Euclidean
distance formula is used. These distances are then either minimized or maximized, based on
whether the samples are positive or negative. The contrastive loss is defined as follows:

Leon =1+ D? + (1 —v) - mazx(0, margin — D)Q, (6)

where D is the distance between features, y is 1 if a pair of samples belong to the same class
(positive samples), and 0 if not (negative samples). In this formula a margin threshold margin is
used. This threshold ensures that negative samples are pushed apart by at least a certain
distance. Without the threshold, negative pairs could be arbitrarily close, which would not
effectively separate different classes. Moreover, it also helps avoid over-penalizing negative
samples that are already far apart. Once the distance between negative samples is larger than the
margin, the loss contribution for those pairs becomes zero. In this project, a margin of 1 will be
used. Furthermore, to once again strike a balance between the contrastive and reconstruction
losses, a contrastive loss coefficient A will also be used to scale the contribution of the contrastive
loss. This results in the following loss function:

L = Lyec + AconLeon (7)

3.5 Projection to 2D Space

Once the ensemble data has been transformed from its original physical space to a feature space
through our encoding process, each data sample is represented by a latent vector. These latent
vectors are then subjected to dimensionality reduction (DR) techniques. Through DR, the latent
vectors are condensed into a lower dimension, in this case, a two-dimensional (2D)
representation, while preserving the key information. This transformation to a 2D space helps
the visual interpretation of the data, allowing for an informative representation of the patterns
present within the dataset.

In this project, we use UMAP (Uniform Manifold Approximation and Projection) to project the
latent vectors into a 2D space, as it was shown to outperform other DR techniques such as t-SNE
or PCA in the paper “Evaluation and Selection of Autoencoders for Expressive Dimensionality
Reduction of Spatial Ensembles” [3]. UMAP does its projection by first determining the
similarities between nodes in its original dimension, after which it projects these nodes on a low-
dimensional plot [28].

UMAP starts with computing the pairwise distances between the data points in its original
dimension. After this, a fuzzy simplicial set is constructed, which captures the local relationship
of the data points. Then, the low-dimensional embedding is optimized using stochastic gradient
descent. After this optimization process, UMAP provides the 2D representation. Once the
projection is done, we evaluate the performance by comparing the silhouette scores. These
projections are only done on the manually labelled subset of the ensembles.

3.6 Hyperparameter search

In order to get the best results possible, a hyperparameter search is performed to achieve the
best-performing model. An initial search is done on the silhouette and contrastive coefficient on
the values of {0.01, 0.1, 0.2, 0.3}. The value with the best results is chosen, after which the
hyperparameters shown in Table 1 will be searched on the AE and VAE.
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In this grid, adaptive weights work as follows: the coefficient for the reconstruction objective will
start at 1, whereas the coefficient for the silhouette or contrastive loss will start at 0. With every
epoch, the reconstruction coefficient will decrease by 0.01, whereas the other coefficient will
increase by 0.01. In case the latent space size is not searched, its default size is 256. The default
setup uses no dropout layers.

Hyperparameter Values/Used
Latent space size {32, 64, 128, 256}
Dropout {0.2, 0.3, 0.4}

0.25, 0.5, 0.75, 1, 1.5, 2,
8 (for 5-VAE) {95, 30, 50, 75, 100
Use of learning rate scheduler {ves, no}
Adaptive weights {yes, no}

Train on reconstruction objective, then clustering or contrastive objective {yes, no}

Table 1: Grid search hyperparameters.
3.7 Setup

All code used for this project was performed using the Python programming language. The
(variational) autoencoders were implemented through PyTorch [29]. CUDA was used to train
the models on the GPU. The RUG’s HPC H’abr ok was used to perform all experiments on [30].
The amount of epochs is set to 100 for the ensemble datasets training, as we could see both the
reconstruction and contrastive or clustering loss converge properly without overfitting. The
dataset was split into a training and validation set with an 80%/20% ratio. The training and
validation set only use the data that was labelled using the EffNetV2 model. Following training
and validation, the UMAP projection is performed on the test set, which is the manually labelled
part of the dataset. For the DD ensemble, the categorical classes will be converted into numerical
classes to be able to compute the soft silhouette score. After some initial testing, the clustering
and contrastive loss coefficients will be set to 0.2, as this value was shown to properly form
clusters while succeeding in reconstructing the images.

4, Results & Discussion

In this section, we show all the results that we have produced. First, we examine the EffNetV2
pseudo-label generation, then we test our general pipeline on a simple dataset, the MNIST digits
dataset. Following that, we show the obtained results from the two ensemble datasets, both with
and without contrastive and clustering loss.

EffNetV2 pseudo-label generation. Firstly, EffNetV2 was trained on the manually labelled
subset of the ensembles. Figure 6 shows that EffNetV2 was properly trained on this subset for
both MCMC and DD, achieving a test accuracy of over 95%. Thus, we use this model to generate
pseudo-labels for a subset of the unlabelled ensemble datasets.
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(a) MCMC ensemble dataset. (b) DD ensemble dataset.

Figure 6: EffNetV2 model accuracy for the ensemble datasets.

MNIST results. Following this, the models are constructed and tested on a simple image dataset
to see if the task succeeds. We have chosen MNIST: a dataset containing 70000 handwritten digit
images of size 28 x 28 [31]. This dataset has 10 classes, representing digits 0 through 9. We
compare some results of the AE and the VAE for both with and without silhouette loss and
contrastive loss.

UMAP MNIST without c loss, score = 0.37089947 UMAP MNIST with contrastive loss, silhouette score = 0.8470271
B B
20
< &
8 v 8
15
- 7 7
6 ¥ ‘ ' 6
8
s i 5
& 4 4
1
, e AN ¢
4
2 = > 2
0 0

(a) AE model without contrastive loss. (b) AE model with contrastive loss.

UMAP MNIST without silhouette loss, silhouette score = 0.39403346 UMAP MNIST with silhouette loss, silhouette score = 0.507603

(¢) VAE model without silhouette loss. (d) VAE model with silhouette loss.

Figure 7: MNIST Autoencoder UMAP projections with and without contrastive loss.
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Some of the results for this dataset are shown in Figure 7. As we can see, the models with
silhouette or contrastive loss outperform the models without these losses and show good
separation. In Figure 7b for example, we see that all clusters have some distance from the other
clusters. Only a few mistakes are made, such as a few ‘9’s being in the ‘4" cluster. We notice that
the AE model outperforms the VAE model. This is likely due to the VAE’s regularization term,
as the MNIST dataset is simple enough not to need this. We can see that the AE model is already
capable of creating distinct clusters, and thus no more complication of the problem is necessary.

However, we cannot determine which loss or model is superior because no further finetuning
has been done yet. We will do this for the scientific ensemble datasets, for which we will perform
a hyperparameter search. A note has to be made that the MNIST dataset is a less complicated
dataset, for which separation from other clusters is a simple task. This might prove to be more
difficult for more complex datasets.

Model loss

0

.....

(a) MNIST AE silhouette loss.

Model loss MCMC

(b) MCMC AE silhouette loss.

Model loss DD

(c) DD AE silhouette loss.

Figure 8: Autoencoder training and testing silhouette loss.

Clustering loss issues. Before heading on to the scientific ensemble datasets in detail, we will
first discuss some problems with the clustering loss. During the testing of the entire pipeline for
the simpler MNIST dataset, no problems were encountered. Both the soft silhouette loss and the
contrastive loss performed as expected. However, with the ensemble datasets, some issues arose.
The issue is shown in Figure 8. We notice that for MNIST, shown in (a), the train and test
silhouette losses decrease jointly, showing no signs of overfitting. For both MCMC and DD,
shown in (b) and (c) respectively, we notice that the train silhouette loss does decrease over time,
however, the testing silhouette loss remains high. This is a classic sign of overfitting: the model
learns the training data too well and is incapable of generalizing because of it.
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A few solutions to overfitting could be to apply early stopping, however, there is no real point at
which the models are good at generalization. Batch normalization is also an option, and is tried
unsuccessfully. Variational autoencoders apply a regularisation term, which also helps in
stopping overfitting. Another solution we tried is to implement dropout: a regularization
technique that drops a node in a neural network with a certain probability [32]. However, none
of these solutions worked perfectly for the ensemble datasets, which is why we have chosen to
primarily show images with contrastive loss, as this all worked adequately. The results with
clustering loss are still supplied in the tables that will follow.

An example of what happens to the UMAP projection when the clustering loss is implemented is
shown in Figure 9. In this projection, we can see some groups of points forming. However, never
is the majority of these points of the same class. So, the model is capable of forming clusters
because of the clustering loss, however, because the model is overfitted, it often chooses the
wrong samples to cluster.

UMAP DD with silhouette loss, silhouette score = -0.1570913

ﬁ.

o
78N
v

Figure 9: DD Autoencoder UMAP projection with clustering loss.

Markov chain Monte Carlo ensemble dataset. Next, we analyze how the models perform on the
scientific ensemble datasets. First, we experiment with the Markov chain Monte Carlo ensemble
dataset. In Figure 10, we see that both the reconstruction and contrastive objectives converge for
the autoencoder models. Figure 10b shows the convergence plots of the model for MCMC, and
we notice that the contrastive loss decreases after about 35 epochs and also converges. Compared
to Figure 10a the contrastive loss value is significantly higher. We notice that in Figure 10a the
test contrastive loss is slightly higher than the training contrastive loss. However, this difference
is minimal, so there is no overfitting. Interestingly, the reconstruction losses for both the models
with and without con- trastive loss converge in the same way. This shows that the models are
capable of performing both the reconstruction and contrastive objectives.

To see if everything works, in Figure 11, the results are shown for a VAE model with and
without silhouette loss, with a dropout layer applied with a value of 0.4. We see that the model
with the clustering loss does perform better than the model without, albeit marginally.
Furthermore, the reconstructed images are very close to the original images. Now, we will
observe the results from the hyperparameter search. First, we look at some of the results for
MCMLC for the autoencoder. These results are shown in Table 2. Please note that in case the latent
space size is not searched, its default size is 256. We notice that the best results are produced by
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the models with either clustering loss or contrastive loss, in this case primarily when dropout of
0.4 is applied. To ensure, we take a look at its reconstructions. These are shown in Figure 12,
where we observe that the reconstructions resemble the input images.

Hyperparameter | Baseline | With clustering loss | With contrastive loss
Latent space=32 0.05 0.08 0.01

Latent space=64 0.02 0.02 0.02

Latent space=256 | 0.03 0.05 —0.03

Dropout=0.3 0.03 0.07 —0.01

Dropout=0.4 0.03 0.10 0.14

Pretrained 0.03 —0.12 —-0.03

Table 2: Autoencoder hyperparameter search: UMAP silhouette scores for MCMC.
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(a) MCMC AE contrastive loss for the model with contrastive loss.
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(b) MCMC AE contrastive loss for the model without contrastive loss.
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(c) MCMC AE reconstruction loss for the model with contrastive loss.
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(d) MCMC AE reconstruction loss for the model without contrastive loss.

Figure 10: MCMC Autoencoder reconstruction and contrastive loss convergence plots for models
with and without contrastive loss.

Then, we look at some of the results for MCMC for the (f3)-variational autoencoder. These results
are shown in Table 3. Here, we immediately see that the results are better than the AE variant,
but often only slightly better than the baseline without clustering or contrastive loss. We observe
the best result for MCMC, the VAE model with clustering loss with dropout of 0.3.

In Figure 13, a selected few projections are shown that are made for the MCMC ensemble. These
projections are all by models with contrastive loss. Firstly, we observe the three autoen- coder
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model projections, shown in plots (a) through (c). Here, we notice that the difference between the
AE model with a latent space of 32 and the model with a latent space of 256 is minimal. The
projections show similar clusters and show a minimally different silhouette score. The AE model
with a dropout layer with a value of 0.4 shows similar behaviour but shows better cohesion
within the clusters.

UMAP MCMC without silhouette loss, silhouette score = 0.24047183 w0 UMAP MCMC with silhouette loss, silhouette score = 0.31209475 w0

(a) VAE model without silhouette loss. b) VAE model with silhouette loss.
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(c) VAE model reconstructions (top row) with silhouette loss with original images (bottom row).

Figure 11: MCMC Variational Autoencoder UMAP projections with and without silhouette
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Figure 12: MCMC autoencoder reconstructions (top row) with dropout=0.4 with original images
(bottom row).

Then, we analyse the remaining 6 VAE projections. First, we examine plots (d) through (f), the (3-
VAE models with different Lagrangian multiplier  values. As expected, the 3-VAE model with
a low value for 3, shown in (d), is very similar to the autoencoder projections. This makes sense,
as a low value for 3 decreases the impact of the KL divergence term, causing the clusters to have
less of a Gaussian distribution form. However, with a too high value for 3, as shown in (e) and
((f)), we notice that all points become scattered together. This means that the KL divergence
constraint becomes too important, causing all images to become too general, and thus failing to
learn the most relevant features. The latent space should be more constrained.

Now, we look at plots (g) through (i). Comparing (g) with its autoencoder counterpart, shown in
(a), we see that the VAE model is more successful in forming cohesive clusters and that the
clusters also have more of a Gaussian distribution form. Moreover, although in (g) some of the
clusters do not have a lot of separation, some do, such as the cluster in the bottom-right with la-
bel 1, as opposed to the top-left cluster with label 2. This effect is not observed as much as in (a).
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Hyperparameter | Baseline | With clustering loss | With contrastive loss
Latent space=32 —0.01 0.00 0.05
Latent space=256 | 0.26 0.21 0.23
Dropout=0.3 0.26 0.28 0.25
Dropout=0.4 0.24 0.21 0.26
£=0.25 0.13 0.19 0.21
£=0.5 0.06 0.13 0.19
B8=2 0.13 0.17 0.20

Table 3: Variational autoencoder hyperparameter search: UMAP silhouette scores for MCMC.

(a) AE model with a dropout layer (b) AE model with latent space= (¢) AE model with latent space=
256.

with value = 0.4.

(d) 8(0.25)-VAE model.

UMAP MEMC it contrastiv s, 53

Mhouete score = 02617987

(g) VAE model with a dropout (h) VAE model with latent space= (i) VAE model with latent space=
256.

layer with value = 0.4.

Figure 13: ((3)-variational) autoencoder models with contrastive loss UMAP projections on

MCMC ensemble dataset.
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(f) B(4)-VAE model.
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Furthermore, in plots (h) and (i), we compare the effect of the size of the latent space for VAEs.
We immediately notice that in (h), the VAE model with a smaller latent space size, the projection
is similar to the AE projections. This shows that the bottleneck is too small, causing the VAE
struggles to learn relevant features as critical information is lost. The MCMC ensemble dataset is
likely too complex to have such a small latent space size. In (i), we see a projection with a higher
latent space size of 256. In this projection, we observe the same effect as in (g), with decent
cohesion and some separation. Interestingly, comparing (h) and (i) to (b) and (c), we notice that
VAEs do benefit from choosing a bigger bottleneck, whereas for AEs, the results are similar no
matter the latent space size. This could be because variational autoencoders are more adept at
learning complex features due to the KL divergence term.
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(d) DD VAE reconstruction loss for the model without contrastive loss.

Figure 14: DD Variational Autoencoder reconstruction and contrastive loss convergence plots
for models with and without contrastive loss.

Drop Dynamics ensemble dataset. First, in Figure 14a, we show the reconstruction and
contrastive losses for Variational Autoen- coder models trained with and without contrastive
loss. A VAE is shown here because we already showed the convergence for AE models in the
previous subsection, for MCMC. We observe that the reconstruction and contrastive objectives
converge for the variational autoencoder models. We notice in (b) that the contrastive losses do
decrease over time, however, they are still significantly higher than the contrastive losses in (a).
In (c) and (d), we see that the reconstruction losses also converge properly, and are much alike.

Now, we will observe the results from the hyperparameter search for the drop dynamics
ensemble dataset. First, we look at some of the results for DD for the autoencoder models. These
results are shown in Table 4. We see that the values are quite close to each other, no matter the
configurations chosen for the models, and with or without clustering or contrastive loss.
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Hyperparameter | Baseline | With clustering loss | With contrastive loss
Latent space=32 -0.08 —0.09 —0.11
Latent space=256 | —0.09 —0.09 -0.10
Dropout=0.3 —0.09 —0.11 —0.12
Dropout=0.4 —0.12 -0.07 —-0.14
Pretrained -0.12 —0.15 —0.10

Table 4: Autoencoder hyperparameter search: UMAP silhouette scores for DD.

best results here are not significantly better than the autoencoder counterparts.

Hyperparameter | Baseline | With clustering loss | With contrastive loss
Latent space=32 —0.09 -0.13 —0.11
Latent space=128 | —0.09 -0.05 —0.09
Latent space=256 | —0.08 -0.11 —0.10
Dropout=0.3 —0.08 —0.12 —0.12
Dropout=0.4 —0.08 —0.08 —0.11
B=0.25 —0.07 —0.08 —0.07
B=1.5 -0.06 —0.11 —0.08
B=2 —0.09 —0.11 —0.09
B=25 —0.08 —0.08 -0.05
B=T5 —0.07 —0.13 —0.07

Table 5: Variational autoencoder hyperparameter search: UMAP silhouette scores for DD.

Now, we will observe the results from the hyperparameter search. First, we look at some of the
results for DD for the autoencoder. These results are shown in Table 5. Whereas the results
improved for MCMC with the VAE, we cannot say the same for the DD dataset. The best results
here are not significantly better than the autoencoder counterparts.

We will analyse the best UMAP projections of both models to see the differences. These
projections are shown in Figure 15. We see that the shape of the clusters are quite different, once
again most likely that the VAE looks different because of the KL-divergence term causing the
clusters to have more of a Gaussian distribution. However, the projection results are not
impressive. This is likely due to the extremely complicated nature of the drop dynamics dataset
and also due to DD having a large number of classes. The reconstructed images, however, are
satisfactory.

In Figure 16, a selected few projections are shown that are made for the DD ensemble. These
projections are all by models trained with contrastive loss. In (a) and (b), we compare two
autoencoder models. They show that the autoencoder struggles to create clusters, even with the
contrastive objective. For the model with the latent space size of 32, we notice that the points are
close to being scattered across a 1D line, meaning that the autoencoder possibly simplifies the
features too much. This is possible because the number of features in the convolutional layers
might be brought down too much, from the images’ size of 160 x 224 to a small size of 32 quite
quickly, causing too much information to be lost in the process. We see in (b) that this is
marginally better for the model with a larger latent space size, however, no real distinct clusters
are created either. In (c) through (e), we evaluate the importance of the Lagrangian multiplier (3.
In (c), we observe more distinct groups of points. However, the complex nature of the dataset
makes it difficult to form cohesive clusters which have good separation. This is made even more
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difficult by having seven different classes. By increasing the value of 3, we notice in (e), that the
points become fairly general, and that the KL divergence term is too involved. One can notice
more of a Gaussian distribution in the created clusters. The clusters’ cohesion is quite high,
although points of the same class are fairly separate, except for, for example, classes 5 and 6. This
behaviour is slightly better in (d), but the UMAP projection’s silhouette score is not improved. In
(f) and (g), we show the importance of the latent space size for the VAE models. The silhouette
score of (g) is a bit better than (f), where the points are separated from each other more. Likely,
this is due to the number of features decreasing too much within the model, having to simplify it
too much in the process.

UMAP DD with contrastive loss, silhouette score = -0.099834054 UMAP DO with contrastive loss, silhouette score = -0.12967125
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(c) VAE model with contrastive loss reconstructed images (reconstructions in the top row) with original
images (bottom row).

Figure 15: DD Variational- and regular Autoencoder UMAP projections with contrastive loss.

Comparison of results. When comparing the results of the MCMC and DD ensemble datasets,
we observe that the results for the MCMC dataset are significantly better than for the DD dataset.
We suspect this might be because the DD dataset has a few more classes than MCMC does (7 vs.
5) and because the DD dataset contains larger images than MCMC (160 x 224 vs. 50 x 50).
Furthermore, DD’s differences between classes are often quite minimal, a small splash in the top
of the image could be the difference. Also, the crucial parts of these images are often at the
bottom of the image, which might be hard to detect for simple distance functions such as the
mean squared error or Euclidean distance functions. This is especially different for a simple
dataset such as MNIST, where the crucial part of the images are central, and the difference
between the classes is easy to observe.

We also observe the difference between the autoencoder models and the ({3)-variational
autoencoder models. We notice that the (3)-VAE outperform the AE models for both datasets.
However, the difference between the two types of models is bigger for the MCMC dataset,
where the (3)-VAE models outperform their AE counterparts fairly significantly. This shows the
importance of the Kullback-Leibler divergence term. We also notice that the (3 value has to be
significantly higher for the DD dataset to obtain satisfactory results than for the MCMC dataset.
This is because of the scaling done in Equation 2. The denominator in this equation is a lot bigger
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for the DD dataset, as its height and width are larger. This means that a higher  value is
necessary to give the KL divergence term the same influence. The KL divergence term helps in
creating clusters that have a Gaussian distribution. The importance of the Lagrangian multiplier
(3 is alsoshown multiple times in the figures. As was shown, the models with either clustering or
contrastive loss barely outperformed the baselines for both datasets. We suspect, once again, this
is due to the datasets’ complexity, especially so because it does succeed in the MNIST dataset.
For the ensemble datasets, the models succeed in the wanted contrasted effect in the latent space.
However, it is too difficult to then project this successfully from a latent space size of 256, for
example, to 2D. Unfortunately, too much crucial information is lost in the process.

UMAP DD with contrastive loss, silhouette score = -0.108542055 UMAP DD with contrastive loss, silhouette score = -0.09821641

(a) AE model with latent space= 32.
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(f) B(30)-VAE model with latent space= 64. (g) B(30)-VAE model with latent space= 256.

Figure 16: ((8)-variational) autoencoder models with contrastive loss UMAP projections on DD
ensemble dataset.
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5. Conclusion

In conclusion, in this project, we have shown different approaches to autoencoder-based semi-
supervised dimensionality reduction and clustering for scientific ensembles. We have done this
first by generating pseudo-labels for the unlabelled part of the dataset, after which we
implemented the soft silhouette score, a clustering loss type, and contrastive loss. Then, with
these learning objectives, we compared different configurations of autoencoders and (f3)-
variational autoencoders, and tested these on two large scientific ensemble datasets, the drop
dynamics dataset and the Markov chain Monte Carlo dataset. We projected the latent space to a
2D representation and we obtained results that showed that although it is possible to get better
results using clustering or contrastive loss, the improvements are marginal. In general, the (3-
VAE models outperformed the AE models. For the Markov chain Monte Carlo ensemble, better
results were obtained than for the drop dynamics dataset, which is explained by DD’s higher
number of labels and its respective complexity. Further research has to be done to improve these
results.

6. Future work

In this section, we will take a look at improvements that could be made to this project, as well as
future work that could be implemented. We note some that we believe could be the most
promising ones:

e  Stopping overfitting with the clustering loss: Clustering loss showed promising results with
the simple MNIST dataset. However, it ran into many issues with the scientific ensemble
datasets. Some slight changes to the function might make it perform better.

e Combining clustering and contrastive loss with reconstruction loss: Because both loss
functions show promising results, it could be interesting to couple them and perform further
optimization.

e Improve on drop dynamics results: In this project, it was difficult to significantly improve
the results of the drop dynamics ensemble dataset because of its complicated nature. More
research should be done to improve upon this.

e Try out other model architectures: Although the models generally outperformed the
baselines, there might be some model architecture that outperforms it all. Furthermore,
different types of models could be looked into.

e Utilize a different type of loss function: Another way to improve could be to utilize a
different type of loss function than contrastive or clustering loss.

e  Further analysis of the (3 value: The Lagrangian multiplier 3 showed to be quite influential.
A larger search for the best value for this could be done. An adaptive weight for this value
could also be implemented, changing the value while training.
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