
JOURNAL OF BAKU ENGINEERING UNIVERSITY- MATHEMATICS AND COMPUTER SCIENCE

2025. Volume 9, Number 2 Pages 113-136

113

UDC: 004.932.2

DOI: https://doi.org/10.30546/09090.2025.510.1002

SENSE: SELF-SUPERVISED NEURAL EMBEDDINGS

FOR SPATIAL ENSEMBLES

HAMID GADIROV*, LENNARD MANUEL, STEFFEN FREY

University of Groningen,

 Netherlands

* h.gadirov@rug.nl

ARTICLE INFO ABSTRACT

Article history

Received:2025-12-16

Received in revised form:2026-01-12

Accepted:2026-01-13

Available online

Analyzing and visualizing scientific ensemble datasets characterized by high

dimensionality and structural complexity remains a significant challenge. While

dimensionality reduction methods and autoencoders are widely used for feature

extraction, their performance often degrades in high-dimensional settings. In this

work, we propose an enhanced autoencoder framework that integrates clustering

and contrastive loss functions into the latent space to improve the interpretability

and visualization of scientific ensemble data. Clustering is guided by a soft

silhouette score, encouraging compact and well-separated latent representations. To

address the presence of unlabeled data, EfficientNetV2 is employed to generate

pseudo-labels for partially unlabeled ensembles. The model is trained by jointly

optimizing reconstruction, clustering, and contrastive objectives, resulting in

improved grouping of similar samples and clearer separation of distinct structures

in the latent space. UMAP is subsequently applied to the learned embeddings to

produce two-dimensional visualizations, which are quantitatively evaluated using

silhouette scores. We evaluate multiple autoencoder variants on two scientific

ensemble datasets: subsurface channel structures generated via Markov chain

Monte Carlo simulations and droplet-impact dynamics on a liquid film. The results

show that incorporating clustering or contrastive objectives yields marginal but

consistent improvements over baseline autoencoders.

Keywords:

Self-supervised learning

Neural embeddings

Autoencoders

Clustering

Latent space analysis

1. Introduction

In recent years, the growth of high-dimensional scientific ensemble datasets has presented both

opportunities and challenges for data analysis and visualization [1]. Scientific ensembles,

characterized by their complex and multi-dimensional nature, contain valuable insights that can

assist in decision-making processes across various domains, from climate modeling to healthcare

diagnostics [2]. However, extracting meaningful features from these datasets remains a difficult

task due to their complexity.

To make these complex ensemble datasets more understandable, dimensionality reduction

techniques can be applied. However, these techniques struggle to uncover the structures in high-

dimensional datasets. Thus, we first apply feature extraction through the use of (variational)

autoencoders. These models extract the most relevant features from the datasets, after which

dimensionality reduction techniques can be used to obtain a more intuitive visualization.

https://doi.org/10.30546/09090.2025.510.1002

Hamid Gadirov, Lennard Manuel, Steffen Frey

114

Combining these two methods has shown promising results, but we hope to achieve better

clustering within this visualization [3].

In this paper, we propose a novel approach for clustering scientific ensemble datasets by

combining the strengths of autoencoder-based feature extraction with a dedicated clustering and

contrastive loss function. Our method aims to extract relevant features of scientific data while

simultaneously encouraging the forming of distinct clusters in the latent space. By jointly

optimizing the reconstruction objective during training as well as the cluster separability

enforced by either the clustering or contrastive loss, our approach offers a framework to obtain a

better understandable visualization.

We implement a soft silhouette score, which is a differentiable version of the silhouette score.

This score is implemented as a clustering loss alongside the reconstruction loss of a (variational)

autoencoder during training, ensuring that the data will form more compact clusters while also

preserving the original data’s information. This clustering loss will also be compared to a

contrastive loss function. Contrastive loss aims to bring instances of the same class closer

together while pushing apart the instances of different classes, ensuring that similar data will be

grouped in the latent space. This clustering during training can be performed on mostly

unlabelled datasets because EffNetV2 will be used to first train the model on the manually

labelled part of the ensemble datasets, after which pseudo-labels for the unlabelled part of the

datasets will be generated, making this a semi-supervised problem.

Once the training is finished, we will perform dimensionality reduction to further reduce the

latent space to a 2D visualization by performing dimensionality reduction: specifically by utiliz-

ing UMAP. The resulting visualizations will be evaluated by their silhouette score and compared

to similar models, with and without a clustering or contrastive loss. In our experiments, we used

two ensemble datasets: Markov Chain Monte Carlo and Drop Dynamics [4], [5].

In Section 2, we give a brief overview of related works. Afterwards, we describe the method-

ology used for this paper in Section 3. Then, we move on to the results and discussion in Section

4. We conclude our findings in Section 5. Finally, we discuss future works in Section 6.

This work is based on the master's internship project by Lennard Manuel titled “Autoencoder-

based semi-supervised dimensionality reduction and clustering for scientific ensembles” from

the University of Groningen [40].

2. Related Work

In this section, we briefly describe what research has been done previously in the fields of

autoencoder-based feature extraction, deep clustering, and contrastive learning.

Autoencoder-based Feature extraction. Autoencoders have become instrumental in the field of

feature extraction due to their ability to learn efficient, compressed representations of high-

dimensional data. Ardelean et al. propose autoencoders as a feature extraction method for spike

sorting, the process of grouping spikes of distinct neurons into their respective clusters [6].

Autoencoders are also widely used in computer vision. Nayak et al. use a deep autoencoder to

help detect brain tumors in medical images [7]. Chen et al. propose a convolutional autoencoder

to help in detecting and analyzing long nodules [8]. Solomon et al. use autoencoders to develop a

face verification system [9]. Furthermore, Variational Autoencoders are also useful in this

process. Tian et al. developed the Pyramid-VAE-GAN network to assist in image inpainting [10].

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

115

More recently, Yin et al. introduced ENTIRE, an autoencoder-based framework that extracts

structure-aware feature representations from time-dependent volumetric data and combines

them with rendering parameters to accurately predict volume rendering time, enabling dynamic

parameter adaptation and load balancing in visualization pipelines [37].

Deep clustering. Deep clustering refers to the process of integrating deep learning networks

with clustering meth- ods. It helps in transforming the input data such that clusters will try to

form within the latent space [11]. In the paper “Deep clustering using the soft silhouette score:

towards compact and well-separated clusters” Vardakas et al. introduce a probabilistic

formulation of the silhouette score to complement their autoencoders’ reconstruction loss with a

clustering loss [12]. They use a Radial Basis Function model as a clustering network to predict the

probabilities with which they calculate the soft silhouette score. They show promising results on

the EMNIST datasets. Xie et al. propose the Deep Embedding Clustering (DEC) method, which

also optimizes both the reconstruction and clustering objective using deep neural networks [13].

They use the KL divergence as their clustering loss. Guo et al. adapt the DEC method and

develop the Improved Deep Embedding Clustering (IDEC) method [14]. This method

simultaneously optimizes the reconstruction and clustering objective during the training phase,

whereas DEC pre-trains on the reconstruction objective, after which it optimizes the clustering

objective. Yang et al. also propose their own method: the Deep Clustering Network (DCN) [15].

This method tries to optimize the clustering objective using k -means on the embedded space.

Contrastive loss. Contrastive learning is a deep learning technique that is effective in creating

separation between different classes. Zhou et al. for example propose a contrastive autoencoder

(CAE-AD) for anomaly detection in multivariate time series [16]. Luo et al. also combine

contrastive learning with an autoencoder to assist in out-of-distribution detection [17]. Lopez-

Avila et al. combine a denoising autoencoder with contrastive learning to help fine-tune their

transformer models [18]. Contrastive learning also has its place in the medical world: Cao et al.

propose ContrastNet, which combines prototypical contrastive learning with an autoencoder to

create an unsupervised feature learning network for hyperspectral classification [19].

Ensemble data analysis. Modern scientific simulations and measurements often generate large

spatio-temporal ensembles, where each member represents a different realization of the same

phenomenon under varying parameters or initial conditions. Extracting meaningful low-

dimensional structure from such ensembles is crucial for tasks such as uncertainty quantification,

pattern discovery, and interactive visualization. Autoencoder-based methods are particularly

well suited for this setting because they can learn compact latent representations that preserve

salient spatial and temporal structures while remaining flexible across different simulation

domains. In the context of ensemble visualization, autoencoder architectures have been

systematically evaluated as feature extractors and dimensionality reduction models for spatial

ensembles, with a focus on how architectural choices affect projection quality and the

expressiveness of the resulting embeddings [35]. These studies demonstrate that appropriate

encoder–decoder configurations can yield latent spaces in which ensemble members cluster

according to physically meaningful behaviors, thereby supporting downstream visual analysis

and clustering.

Beyond static dimensionality reduction, recent work has explored deep learning for learning

flow fields and reconstructing missing temporal information in ensemble data. FLINT introduces

a learning-based approach for flow estimation and temporal interpolation that reconstructs

Hamid Gadirov, Lennard Manuel, Steffen Frey

116

velocity fields and scalar quantities in 2D+time and 3D+time ensembles, enabling high-quality in-

between time steps without strong domain assumptions [34]. HyperFLINT extends this idea

with a hypernetwork that conditions on simulation parameters, improving generalization across

different ensemble configurations and supporting parameter-aware interpolation quality [33].

Together, these methods illustrate how neural networks can capture both spatial and temporal

coherence in ensembles and use this knowledge to fill temporal gaps, generate dense time

sampling, and support fluid, artifact-free animation and analysis [38].

These developments are part of a broader trend toward machine-learning-driven ensemble data

analysis in scientific visualization. A recent comprehensive study on machine learning for

scientific visualization discusses autoencoder-based dimensionality reduction, learning-based

flow estimation, and hypernetwork-based adaptation as complementary building blocks for

analyzing complex spatio-temporal ensembles [36]. In parallel, autoencoders and related deep

architectures have been applied to other ensemble-related tasks, such as learning low-

dimensional probabilistic representations of ensemble forecast fields and leveraging variational

autoencoders for ensemble visualization and uncertainty exploration in meteorology. The

usefulness of such learned latent representations is further highlighted by applications beyond

“pure” data analysis. For example, ENTIRE uses deep features derived from volumetric data

and camera parameters to predict volume rendering time, enabling dynamic parameter

adaptation and more stable interactive performance for time-dependent volume data [37].

Collectively, these works underline that autoencoder-based representations and related deep

learning techniques provide a powerful and versatile foundation for ensemble data analysis,

supporting not only visualization and clustering but also performance prediction and system-

level steering in complex simulation workflows.

Recent advances in Artificial Intelligence. Recent advances in large language models (LLMs)

and foundation models have begun to influence scientific data analysis workflows, including

ensemble-based visualization and simulation analysis. While LLMs are primarily developed for

language tasks, their underlying architectural and system-level innovations—such as attention

mechanisms, scalable training paradigms, and modular model composition—are increasingly

relevant for handling large, heterogeneous scientific datasets. In particular, LLM-driven

interfaces and multimodal models show promise for assisting exploratory analysis, metadata

reasoning, and interactive steering of ensemble simulations by coupling learned representations

with semantic context. As scientific datasets continue to grow in size and complexity, real-time

optimization and scalability have become central concerns. Techniques such as mixed-precision

training, low-rank adaptation (LoRA), and model pruning significantly reduce computational

overhead while preserving model performance [39]. System-level frameworks including vLLM

and DeepSpeed further enable efficient training and inference at scale, while sparse expert

architectures such as Switch Transformers demonstrate how conditional computation can reduce

resource usage without sacrificing expressiveness. Complementary approaches based on

reinforcement learning allow models to adapt their complexity dynamically in response to

available computational budgets. Moreover, distributed strategies such as federated learning

and ZeRO improve scalability and collaboration across institutions handling large-scale

ensemble datasets. Finally, emerging work on agentic AI systems—in which autonomous agents

coordinate learning, inference, and analysis tasks—opens new directions for ensemble data

processing. When combined with containerization technologies such as Docker, these agents can

be deployed as modular, reproducible components that manage data ingestion [41, 42], model

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

117

execution, and visualization pipelines in a flexible and scalable manner, supporting robust,

system-level integration of learning-based ensemble analysis.

3. Methodology

In this section, we discuss and explain all steps of the pipeline of our approach, which is shown

in Figure 1. First, the ensemble data is preprocessed, after which we generate the pseudo- labels

using EffNetV2. Following this, feature extraction is performed with the (variational)

autoencoders using reconstruction loss combined with either clustering or contrastive loss. Then,

the latent space is projected to a 2D space using UMAP, which is then evaluated by their

silhouette scores. Then, all the results are compared.

3.1 Scientific ensemble datasets

In this project, we consider two ensemble datasets. The first is the Markov chain Monte Carlo

(MCMC) ensemble dataset, which depicts channel structures in soil [4]. This ensemble contains

95K images. The images are monochrome and have a resolution of 50 × 50. An example of the

MCMC images is shown in Figure 2.

Hamid Gadirov, Lennard Manuel, Steffen Frey

118

The second ensemble dataset is the drop dynamics (DD) ensemble, which studies the impact of a

droplet with a film [5]. These images are also monochrome and have a resolution of 160×224.

This ensemble contains 135K images. An example of the DD images is shown in Figure 3.

For both ensembles, a small subset of the datasets is labelled manually. For the MCMC ensemble,

2.5K images are labelled, and 7.2K for the DD ensemble. This labelling was done by observing

the different behaviour types shown by the images. For MCMC, there are five different

categorical classes. For the DD ensemble, there are seven different categorical classes: bubble,

bubble-splash, column, crown, crown-splash, splash, and drop.

 Because the ensemble datasets are only partially labelled, we use an EfficientNetV2 model to

train on this part, and then generate pseudo-labels for the unlabelled subset of the ensembles,

making this a semi-supervised problem. EfficientNetV2 is an image classification convolutional

network, and it is known for its small size, speed and performance [20]. For this project, a subset

of 30K images for the MCMC ensemble will be used, and 26K images for the DD ensemble. Both

datasets are normalized to zero mean and unit standard deviation.

3.2 Architecture

In this subsection, (variational) autoencoders will be explained in detail, and the architectures

used for this project will be described.

Autoencoders. Autoencoders and (β)-variational autoencoders will be used for this project. An

autoencoder (AE) is a type of artificial neural network that is often used for unsupervised

learning problems [21]. An autoencoder aims to learn a representation (encoding) for a dataset

by training the network to reconstruct the original input as accurately as possible. It consists of

two main parts: an encoder and a decoder.

The encoder compresses the input data into a lower-dimensional representation, also known as

the latent space or encoding. It typically consists of one or more hidden layers that progressively

reduce the dimensionality of the input data, mapping it to a lower-dimensional representation.

The encoder’s output represents a compressed version of the input data, capturing its essential

features. Mathematically, an encoder with one hidden layer can be expressed as z = σ(Wx + b),

where z is the latent representation, σ is the activation function, W is the weight matrix, x is the

input image, and b is the bias.

The decoder reconstructs the original input data from the encoded representation produced by

the encoder. It typically consists of one or more hidden layers that gradually expand the

dimensionality of the encoded representation back to the original input dimensionality. The de-

coder’s output should ideally closely match the input data, effectively “decoding” the

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

119

compressed representation into a reconstructed version of the original input. Mathematically, a

decoder with one hidden layer can be expressed as x′ = σ′(W′z + b′), where x′ is the reconstructed

image, σ′ is the activation function, W’ is the weight matrix, z is the latent representation, and b’

is the bias. The general structure of an autoencoder is shown in Figure 4.

During training, an autoencoder is trained to minimize the reconstruction loss function that

quantifies the difference between the input data and the reconstructed output. In this project, the

Mean Squared Error is chosen as the loss function. Mathematically, MSE is expressed as

𝐿(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖₂.

Variational autoencoders. Variational autoencoders (VAE) are a type of autoencoder and are

similar to the previously explained autoencoders in many ways [22]. The key difference between

a VAE and a traditional autoencoder lies in how they handle the latent space representation. In a

traditional autoencoder, the encoder maps input data to a fixed-dimensional latent space, and

the decoder reconstructs the input data from this latent representation. However, in a VAE, the

latent space is probabilistic, meaning that instead of encoding data points to a specific point z in

the latent space, the encoder outputs the parameters of a probability distribution over the latent

space. Then, the decoder takes a sampled point from this distribution and generates a new

image. Because of VAEs nature of using a sample from the distribution, they can produce new

images. This can help in preventing overfitting, as the model learns a more general structure

from the image.

Furthermore, VAEs also add a regularization term to the loss function, called the Kullback-

Leibler (KL) divergence. The KL divergence encourages the learned latent space to approximate

a unit Gaussian distribution, helping to ensure that the latent space remains interpretable. The

training objective of a VAE is to maximize the Evidence Lower Bound (ELBO), which is

comprised of two parts:

Hamid Gadirov, Lennard Manuel, Steffen Frey

120

where the prior distribution with a unit Gaussian distribution (zero mean and unit standard

deviation) and the probability distribution of the parameters µ and σ are outputted by the

encoder. This means that expected value is equal to the reconstruction loss, and the second part

is equal to the KL divergence, which measures the difference between the probability

distribution outputted by the encoder and the prior distribution. The ELBO (evidence lower

bound) needs to be minimized.

As in the paper “Evaluation and selection of autoencoders for expressive dimensionality

reduction of spatial ensembles” [3], the KL divergence is scaled according to the dimensionality

of the latent space according to the following formula:

where dim(latent) is the size of the latent space, and height and width are the height and width

of the input image. The general structure of a VAE is shown in Figure 5.

A β-VAE is a type of VAE that adds the Lagrangian multiplier β which balances the recon-

struction accuracy and impact of the KL divergence factor [23]. Using the Lagrangian multiplier

β can help to create an even more expressive latent space. With a β-VAE, the KL divergence

coefficient of Equation 2 is multiplied by this Lagrange Multiplier β. This means that a β value of

1 means that it is equal to a VAE.

The architecture used for the AE and (β)-VAE is the same symmetric structure as in [3], meaning

that the decoder is reversed to the encoder. First, the resolution of input images is reduced by

half after all four convolutional layers. This is done by using a stride of 2. The kernel size for

convolution was set to 3, and the number of filters is equal to 64 with zero padding. As an

optimizer, Adam was used with a learning rate of 0.0005 [24]. The ReLU activation function was

used throughout with random weight initialization. ReLU is linear in the positive dimension but

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

121

0 for any negative value [25]. Furthermore, the batch size used in this project is equal to 128. This

value was the largest Habrok could reliably handle without running into GPU memory issues.

3.3 Clustering loss

To enhance the performance of autoencoder-based clustering, we complement the reconstruction

loss with silhouette score as clustering loss. The silhouette score is a widely used clustering

quality metric, which measures how similar an item is to other items in the same cluster

(cohesion) as well as how different it is from items from other clusters (separation) [26]. The

silhouette score ranges from −1 to 1. A high value (close to 1) indicates that an item has good

separation from other clusters while also being similar to items from its cluster (good cohesion).

A low value (close to -1) indicates that the item has both bad separation and bad cohesion. The

silhouette score is defined as follows:

where a(i) is the mean distance of sample i to all the points in its own cluster, and b(i) is the mean

distance between i and the nearest cluster. Thus, to achieve a high silhouette score, a(i) must be

minimized, meaning that a point’s distance to the other points in its cluster must be low (good

cohesion), while b(i) must be maximized, meaning that the distance to other clusters must be

high (good separation).

However, we cannot simply implement the silhouette score as is, as the function needs to be

differentiable to ensure that backpropagation works. This is why we introduce the soft silhouette

score: a differentiable variant of the traditional silhouette score [12]. The soft silhouette score is

entirely implemented through tensor operations, ensuring its differentiability. We define the

clustering loss as follows:

where Sf is the soft silhouette score. 1 is subtracted from the soft silhouette score to ensure that

the clustering loss is in the range [0, 2], where 0 is the best achievable clustering loss. By adding

this clustering loss alongside the reconstruction loss Lrec, we ensure that the data will form more

compact clusters while also preserving the information of the original data. To strike a balance

between the clustering and reconstruction objectives, we introduce a clustering coefficient λcl to

scale the contribution of the clustering loss. By adjusting the coefficient of the clustering loss, we

control the emphasis placed on clustering relative to reconstruction during training. This

approach allows us to fine-tune the trade-off between clustering accuracy and reconstruction

performance. This gives us the following loss function:

3.4 Contrastive loss

Contrastive loss takes the vectors for a positive example and calculates its distance to an example

of the same class and contrasts that with the distance to negative examples [27]. The goal is thus

to bring instances with the same class closer together while pushing apart the instances with

different classes. It helps ensure that the positive examples are represented by similar vectors

Hamid Gadirov, Lennard Manuel, Steffen Frey

122

while negative examples are represented by dissimilar vectors. This is accomplished by

calculating the distances of the vectors with any distance metric. For this project, the Euclidean

distance formula is used. These distances are then either minimized or maximized, based on

whether the samples are positive or negative. The contrastive loss is defined as follows:

where D is the distance between features, y is 1 if a pair of samples belong to the same class

(positive samples), and 0 if not (negative samples). In this formula a margin threshold margin is

used. This threshold ensures that negative samples are pushed apart by at least a certain

distance. Without the threshold, negative pairs could be arbitrarily close, which would not

effectively separate different classes. Moreover, it also helps avoid over-penalizing negative

samples that are already far apart. Once the distance between negative samples is larger than the

margin, the loss contribution for those pairs becomes zero. In this project, a margin of 1 will be

used. Furthermore, to once again strike a balance between the contrastive and reconstruction

losses, a contrastive loss coefficient λ will also be used to scale the contribution of the contrastive

loss. This results in the following loss function:

3.5 Projection to 2D Space

Once the ensemble data has been transformed from its original physical space to a feature space

through our encoding process, each data sample is represented by a latent vector. These latent

vectors are then subjected to dimensionality reduction (DR) techniques. Through DR, the latent

vectors are condensed into a lower dimension, in this case, a two-dimensional (2D)

representation, while preserving the key information. This transformation to a 2D space helps

the visual interpretation of the data, allowing for an informative representation of the patterns

present within the dataset.

In this project, we use UMAP (Uniform Manifold Approximation and Projection) to project the

latent vectors into a 2D space, as it was shown to outperform other DR techniques such as t-SNE

or PCA in the paper “Evaluation and Selection of Autoencoders for Expressive Dimensionality

Reduction of Spatial Ensembles” [3]. UMAP does its projection by first determining the

similarities between nodes in its original dimension, after which it projects these nodes on a low-

dimensional plot [28].

UMAP starts with computing the pairwise distances between the data points in its original

dimension. After this, a fuzzy simplicial set is constructed, which captures the local relationship

of the data points. Then, the low-dimensional embedding is optimized using stochastic gradient

descent. After this optimization process, UMAP provides the 2D representation. Once the

projection is done, we evaluate the performance by comparing the silhouette scores. These

projections are only done on the manually labelled subset of the ensembles.

3.6 Hyperparameter search

In order to get the best results possible, a hyperparameter search is performed to achieve the

best-performing model. An initial search is done on the silhouette and contrastive coefficient on

the values of {0.01, 0.1, 0.2, 0.3}. The value with the best results is chosen, after which the

hyperparameters shown in Table 1 will be searched on the AE and VAE.

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

123

In this grid, adaptive weights work as follows: the coefficient for the reconstruction objective will

start at 1, whereas the coefficient for the silhouette or contrastive loss will start at 0. With every

epoch, the reconstruction coefficient will decrease by 0.01, whereas the other coefficient will

increase by 0.01. In case the latent space size is not searched, its default size is 256. The default

setup uses no dropout layers.

3.7 Setup

All code used for this project was performed using the Python programming language. The

(variational) autoencoders were implemented through PyTorch [29]. CUDA was used to train

the models on the GPU. The RUG’s HPC H´abr´ok was used to perform all experiments on [30].

The amount of epochs is set to 100 for the ensemble datasets training, as we could see both the

reconstruction and contrastive or clustering loss converge properly without overfitting. The

dataset was split into a training and validation set with an 80%/20% ratio. The training and

validation set only use the data that was labelled using the EffNetV2 model. Following training

and validation, the UMAP projection is performed on the test set, which is the manually labelled

part of the dataset. For the DD ensemble, the categorical classes will be converted into numerical

classes to be able to compute the soft silhouette score. After some initial testing, the clustering

and contrastive loss coefficients will be set to 0.2, as this value was shown to properly form

clusters while succeeding in reconstructing the images.

4. Results & Discussion

In this section, we show all the results that we have produced. First, we examine the EffNetV2

pseudo-label generation, then we test our general pipeline on a simple dataset, the MNIST digits

dataset. Following that, we show the obtained results from the two ensemble datasets, both with

and without contrastive and clustering loss.

EffNetV2 pseudo-label generation. Firstly, EffNetV2 was trained on the manually labelled

subset of the ensembles. Figure 6 shows that EffNetV2 was properly trained on this subset for

both MCMC and DD, achieving a test accuracy of over 95%. Thus, we use this model to generate

pseudo-labels for a subset of the unlabelled ensemble datasets.

Hamid Gadirov, Lennard Manuel, Steffen Frey

124

MNIST results. Following this, the models are constructed and tested on a simple image dataset

to see if the task succeeds. We have chosen MNIST: a dataset containing 70000 handwritten digit

images of size 28 × 28 [31]. This dataset has 10 classes, representing digits 0 through 9. We

compare some results of the AE and the VAE for both with and without silhouette loss and

contrastive loss.

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

125

Some of the results for this dataset are shown in Figure 7. As we can see, the models with

silhouette or contrastive loss outperform the models without these losses and show good

separation. In Figure 7b for example, we see that all clusters have some distance from the other

clusters. Only a few mistakes are made, such as a few ‘9’s being in the ‘4’ cluster. We notice that

the AE model outperforms the VAE model. This is likely due to the VAE’s regularization term,

as the MNIST dataset is simple enough not to need this. We can see that the AE model is already

capable of creating distinct clusters, and thus no more complication of the problem is necessary.

However, we cannot determine which loss or model is superior because no further finetuning

has been done yet. We will do this for the scientific ensemble datasets, for which we will perform

a hyperparameter search. A note has to be made that the MNIST dataset is a less complicated

dataset, for which separation from other clusters is a simple task. This might prove to be more

difficult for more complex datasets.

Clustering loss issues. Before heading on to the scientific ensemble datasets in detail, we will

first discuss some problems with the clustering loss. During the testing of the entire pipeline for

the simpler MNIST dataset, no problems were encountered. Both the soft silhouette loss and the

contrastive loss performed as expected. However, with the ensemble datasets, some issues arose.

The issue is shown in Figure 8. We notice that for MNIST, shown in (a), the train and test

silhouette losses decrease jointly, showing no signs of overfitting. For both MCMC and DD,

shown in (b) and (c) respectively, we notice that the train silhouette loss does decrease over time,

however, the testing silhouette loss remains high. This is a classic sign of overfitting: the model

learns the training data too well and is incapable of generalizing because of it.

Hamid Gadirov, Lennard Manuel, Steffen Frey

126

A few solutions to overfitting could be to apply early stopping, however, there is no real point at

which the models are good at generalization. Batch normalization is also an option, and is tried

unsuccessfully. Variational autoencoders apply a regularisation term, which also helps in

stopping overfitting. Another solution we tried is to implement dropout: a regularization

technique that drops a node in a neural network with a certain probability [32]. However, none

of these solutions worked perfectly for the ensemble datasets, which is why we have chosen to

primarily show images with contrastive loss, as this all worked adequately. The results with

clustering loss are still supplied in the tables that will follow.

An example of what happens to the UMAP projection when the clustering loss is implemented is

shown in Figure 9. In this projection, we can see some groups of points forming. However, never

is the majority of these points of the same class. So, the model is capable of forming clusters

because of the clustering loss, however, because the model is overfitted, it often chooses the

wrong samples to cluster.

Markov chain Monte Carlo ensemble dataset. Next, we analyze how the models perform on the

scientific ensemble datasets. First, we experiment with the Markov chain Monte Carlo ensemble

dataset. In Figure 10, we see that both the reconstruction and contrastive objectives converge for

the autoencoder models. Figure 10b shows the convergence plots of the model for MCMC, and

we notice that the contrastive loss decreases after about 35 epochs and also converges. Compared

to Figure 10a the contrastive loss value is significantly higher. We notice that in Figure 10a the

test contrastive loss is slightly higher than the training contrastive loss. However, this difference

is minimal, so there is no overfitting. Interestingly, the reconstruction losses for both the models

with and without con- trastive loss converge in the same way. This shows that the models are

capable of performing both the reconstruction and contrastive objectives.

To see if everything works, in Figure 11, the results are shown for a VAE model with and

without silhouette loss, with a dropout layer applied with a value of 0.4. We see that the model

with the clustering loss does perform better than the model without, albeit marginally.

Furthermore, the reconstructed images are very close to the original images. Now, we will

observe the results from the hyperparameter search. First, we look at some of the results for

MCMC for the autoencoder. These results are shown in Table 2. Please note that in case the latent

space size is not searched, its default size is 256. We notice that the best results are produced by

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

127

the models with either clustering loss or contrastive loss, in this case primarily when dropout of

0.4 is applied. To ensure, we take a look at its reconstructions. These are shown in Figure 12,

where we observe that the reconstructions resemble the input images.

Then, we look at some of the results for MCMC for the (β)-variational autoencoder. These results

are shown in Table 3. Here, we immediately see that the results are better than the AE variant,

but often only slightly better than the baseline without clustering or contrastive loss. We observe

the best result for MCMC, the VAE model with clustering loss with dropout of 0.3.

In Figure 13, a selected few projections are shown that are made for the MCMC ensemble. These

projections are all by models with contrastive loss. Firstly, we observe the three autoen- coder

Hamid Gadirov, Lennard Manuel, Steffen Frey

128

model projections, shown in plots (a) through (c). Here, we notice that the difference between the

AE model with a latent space of 32 and the model with a latent space of 256 is minimal. The

projections show similar clusters and show a minimally different silhouette score. The AE model

with a dropout layer with a value of 0.4 shows similar behaviour but shows better cohesion

within the clusters.

Then, we analyse the remaining 6 VAE projections. First, we examine plots (d) through (f), the β-

VAE models with different Lagrangian multiplier β values. As expected, the β-VAE model with

a low value for β, shown in (d), is very similar to the autoencoder projections. This makes sense,

as a low value for β decreases the impact of the KL divergence term, causing the clusters to have

less of a Gaussian distribution form. However, with a too high value for β, as shown in (e) and

((f)), we notice that all points become scattered together. This means that the KL divergence

constraint becomes too important, causing all images to become too general, and thus failing to

learn the most relevant features. The latent space should be more constrained.

Now, we look at plots (g) through (i). Comparing (g) with its autoencoder counterpart, shown in

(a), we see that the VAE model is more successful in forming cohesive clusters and that the

clusters also have more of a Gaussian distribution form. Moreover, although in (g) some of the

clusters do not have a lot of separation, some do, such as the cluster in the bottom-right with la-

bel 1, as opposed to the top-left cluster with label 2. This effect is not observed as much as in (a).

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

129

Furthermore, in plots (h) and (i), we compare the effect of the size of the latent space for VAEs.

We immediately notice that in (h), the VAE model with a smaller latent space size, the projection

is similar to the AE projections. This shows that the bottleneck is too small, causing the VAE

struggles to learn relevant features as critical information is lost. The MCMC ensemble dataset is

likely too complex to have such a small latent space size. In (i), we see a projection with a higher

latent space size of 256. In this projection, we observe the same effect as in (g), with decent

cohesion and some separation. Interestingly, comparing (h) and (i) to (b) and (c), we notice that

VAEs do benefit from choosing a bigger bottleneck, whereas for AEs, the results are similar no

matter the latent space size. This could be because variational autoencoders are more adept at

learning complex features due to the KL divergence term.

Hamid Gadirov, Lennard Manuel, Steffen Frey

130

Drop Dynamics ensemble dataset. First, in Figure 14a, we show the reconstruction and

contrastive losses for Variational Autoen- coder models trained with and without contrastive

loss. A VAE is shown here because we already showed the convergence for AE models in the

previous subsection, for MCMC. We observe that the reconstruction and contrastive objectives

converge for the variational autoencoder models. We notice in (b) that the contrastive losses do

decrease over time, however, they are still significantly higher than the contrastive losses in (a).

In (c) and (d), we see that the reconstruction losses also converge properly, and are much alike.

Now, we will observe the results from the hyperparameter search for the drop dynamics

ensemble dataset. First, we look at some of the results for DD for the autoencoder models. These

results are shown in Table 4. We see that the values are quite close to each other, no matter the

configurations chosen for the models, and with or without clustering or contrastive loss.

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

131

Now, we will observe the results from the hyperparameter search. First, we look at some of the

results for DD for the autoencoder. These results are shown in Table 5. Whereas the results

improved for MCMC with the VAE, we cannot say the same for the DD dataset. The best results

here are not significantly better than the autoencoder counterparts.

We will analyse the best UMAP projections of both models to see the differences. These

projections are shown in Figure 15. We see that the shape of the clusters are quite different, once

again most likely that the VAE looks different because of the KL-divergence term causing the

clusters to have more of a Gaussian distribution. However, the projection results are not

impressive. This is likely due to the extremely complicated nature of the drop dynamics dataset

and also due to DD having a large number of classes. The reconstructed images, however, are

satisfactory.

In Figure 16, a selected few projections are shown that are made for the DD ensemble. These

projections are all by models trained with contrastive loss. In (a) and (b), we compare two

autoencoder models. They show that the autoencoder struggles to create clusters, even with the

contrastive objective. For the model with the latent space size of 32, we notice that the points are

close to being scattered across a 1D line, meaning that the autoencoder possibly simplifies the

features too much. This is possible because the number of features in the convolutional layers

might be brought down too much, from the images’ size of 160 × 224 to a small size of 32 quite

quickly, causing too much information to be lost in the process. We see in (b) that this is

marginally better for the model with a larger latent space size, however, no real distinct clusters

are created either. In (c) through (e), we evaluate the importance of the Lagrangian multiplier β.

In (c), we observe more distinct groups of points. However, the complex nature of the dataset

makes it difficult to form cohesive clusters which have good separation. This is made even more

Hamid Gadirov, Lennard Manuel, Steffen Frey

132

difficult by having seven different classes. By increasing the value of β, we notice in (e), that the

points become fairly general, and that the KL divergence term is too involved. One can notice

more of a Gaussian distribution in the created clusters. The clusters’ cohesion is quite high,

although points of the same class are fairly separate, except for, for example, classes 5 and 6. This

behaviour is slightly better in (d), but the UMAP projection’s silhouette score is not improved. In

(f) and (g), we show the importance of the latent space size for the VAE models. The silhouette

score of (g) is a bit better than (f), where the points are separated from each other more. Likely,

this is due to the number of features decreasing too much within the model, having to simplify it

too much in the process.

Comparison of results. When comparing the results of the MCMC and DD ensemble datasets,

we observe that the results for the MCMC dataset are significantly better than for the DD dataset.

We suspect this might be because the DD dataset has a few more classes than MCMC does (7 vs.

5) and because the DD dataset contains larger images than MCMC (160 × 224 vs. 50 × 50).

Furthermore, DD’s differences between classes are often quite minimal, a small splash in the top

of the image could be the difference. Also, the crucial parts of these images are often at the

bottom of the image, which might be hard to detect for simple distance functions such as the

mean squared error or Euclidean distance functions. This is especially different for a simple

dataset such as MNIST, where the crucial part of the images are central, and the difference

between the classes is easy to observe.

We also observe the difference between the autoencoder models and the (β)-variational

autoencoder models. We notice that the (β)-VAE outperform the AE models for both datasets.

However, the difference between the two types of models is bigger for the MCMC dataset,

where the (β)-VAE models outperform their AE counterparts fairly significantly. This shows the

importance of the Kullback-Leibler divergence term. We also notice that the β value has to be

significantly higher for the DD dataset to obtain satisfactory results than for the MCMC dataset.

This is because of the scaling done in Equation 2. The denominator in this equation is a lot bigger

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

133

for the DD dataset, as its height and width are larger. This means that a higher β value is

necessary to give the KL divergence term the same influence. The KL divergence term helps in

creating clusters that have a Gaussian distribution. The importance of the Lagrangian multiplier

β is alsoshown multiple times in the figures. As was shown, the models with either clustering or

contrastive loss barely outperformed the baselines for both datasets. We suspect, once again, this

is due to the datasets’ complexity, especially so because it does succeed in the MNIST dataset.

For the ensemble datasets, the models succeed in the wanted contrasted effect in the latent space.

However, it is too difficult to then project this successfully from a latent space size of 256, for

example, to 2D. Unfortunately, too much crucial information is lost in the process.

Hamid Gadirov, Lennard Manuel, Steffen Frey

134

5. Conclusion

In conclusion, in this project, we have shown different approaches to autoencoder-based semi-

supervised dimensionality reduction and clustering for scientific ensembles. We have done this

first by generating pseudo-labels for the unlabelled part of the dataset, after which we

implemented the soft silhouette score, a clustering loss type, and contrastive loss. Then, with

these learning objectives, we compared different configurations of autoencoders and (β)-

variational autoencoders, and tested these on two large scientific ensemble datasets, the drop

dynamics dataset and the Markov chain Monte Carlo dataset. We projected the latent space to a

2D representation and we obtained results that showed that although it is possible to get better

results using clustering or contrastive loss, the improvements are marginal. In general, the β-

VAE models outperformed the AE models. For the Markov chain Monte Carlo ensemble, better

results were obtained than for the drop dynamics dataset, which is explained by DD’s higher

number of labels and its respective complexity. Further research has to be done to improve these

results.

6. Future work

In this section, we will take a look at improvements that could be made to this project, as well as

future work that could be implemented. We note some that we believe could be the most

promising ones:

● Stopping overfitting with the clustering loss: Clustering loss showed promising results with

the simple MNIST dataset. However, it ran into many issues with the scientific ensemble

datasets. Some slight changes to the function might make it perform better.

● Combining clustering and contrastive loss with reconstruction loss: Because both loss

functions show promising results, it could be interesting to couple them and perform further

optimization.

● Improve on drop dynamics results: In this project, it was difficult to significantly improve

the results of the drop dynamics ensemble dataset because of its complicated nature. More

research should be done to improve upon this.

● Try out other model architectures: Although the models generally outperformed the

baselines, there might be some model architecture that outperforms it all. Furthermore,

different types of models could be looked into.

● Utilize a different type of loss function: Another way to improve could be to utilize a

different type of loss function than contrastive or clustering loss.

● Further analysis of the β value: The Lagrangian multiplier β showed to be quite influential.

A larger search for the best value for this could be done. An adaptive weight for this value

could also be implemented, changing the value while training.

Sense: Self-Supervised Neural Embeddings for Spatial Ensembles

135

Reference list

1. Junpeng Wang, Subhashis Hazarika, Cheng Li, and Han-Wei Shen. Visualization and visual analysis of ensemble data: A

survey. IEEE Transactions on Visualization and Computer Graphics, 25(9):2853–2872, 2019.

2. Julie Jebeile and Michel Crucifix. Multi-model ensembles in climate science: Mathematical structures and expert judgements.

Studies in History and Philosophy of Science Part A, 83:44–52, 2020.

3. Hamid Gadirov, Gleb Tkachev, Thomas Ertl, and Steffen Frey. Evaluation and selection of autoencoders for expressive

dimensionality reduction of spatial ensembles. In Advances in Visual Computing, pp. 222–234, 2021. Springer International

Publishing.

4. Sebastian Reuschen, Teng Xu, and Wolfgang Nowak. Bayesian inversion of hierarchical geostatistical models using a parallel-

tempering sequential gibbs MCMC. Advances in Water Resources, 141:103614, 07 2020.

5. Anne Geppert, Dimitrios Chatzianagnostou, Christian Meister, Hassan Gomaa, G. Lamanna, and Bernhard Weigand.

Classification of impact morphology and splash- ing/deposition limit for n-hexadecane. Atomization and Sprays, 26, 01 2015.

6. Eugen-Richard Ardelean, Andreea Coporˆıie, Ana-Maria Ichim, Mihaela Dˆıns, oreanu, and Raul Cristian Mures, an. A

study of autoencoders as a feature extraction technique for spike sorting. PLOS ONE, 18(3):1–29, 03 2023.

7. Dillip Ranjan Nayak, Neelamadhab Padhy, Pradeep Kumar Mallick, and Ashish Singh. A deep autoencoder approach for

detection of brain tumor images. Computers and Electrical Engineering, 102:108238, 2022.

8. Min Chen, Xiaobo Shi, Yin Zhang, Di Wu, and Mohsen Guizani. Deep feature learning for medical image analysis with

convolutional autoencoder neural network. IEEE Transactions on Big Data, PP:1–1, 06 2017.

9. Enoch Solomon, Abraham Woubie, and Eyael Solomon Emiru. Autoencoder based face verification system, 2024.

10. Huiyuan Tian, Li Zhang, Shijian Li, Min Yao, and Gang Pan. Pyramid-vae-gan: Trans- ferring hierarchical latent variables

for image inpainting. Computational Visual Media, 9:827–841, 07 2023.

11. Xiuxi Wei, Zhihui Zhang, Huajuan Huang, and Yongquan Zhou. An overview on deep clustering. Neurocomputing,

590:127761, 2024.

12. Georgios Vardakas, Ioannis Papakostas, and Aristidis Likas. Deep clustering using the soft silhouette score: Towards compact

and well-separated clusters, 2024.

13. Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis, 2016.

14. Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with local structure

preservation. 08 2017.

15. Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. Towards k-means-friendly spaces: Simultaneous deep

learning and clustering, 2017.

16. Hao Zhou, Ke Yu, Xuan Zhang, Guanlin Wu, and Anis Yazidi. Contrastive autoencoder for anomaly detection in

multivariate time series. Information Sciences, 610:266–280, 2022.

17. Dawei Luo, Heng Zhou, Joonsoo Bae, and Bom Yun. Combining contrastive learning with auto-encoder for out-of-

distribution detection. Applied Sciences, 13:12930, 12 2023.

18. Alejo Lopez-Avila and V´ıctor Su´arez-Paniagua. Combining denoising autoencoders with contrastive learning to fine-tune

transformer models, 2024.

19. Zeyu Cao, Xiaorun Li, Yueming Feng, Shuhan Chen, Chaoqun Xia, and Liaoying Zhao. Contrastnet: Unsupervised feature

learning by autoencoder and prototypical contrastive learning for hyperspectral imagery classification. Neurocomputing,

460:71–83, October 2021.

20. Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training, 2021.

21. Mark A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. Aiche Journal, 37:233–243,

1991.

22. Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

23. Irina Higgins, Lo¨ıc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed,

and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In International

Conference on Learning Representations, 2016.

24. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

25. Vinod Nair and Geoffrey Hinton. Rectified linear units improve restricted boltzmann ma- chines vinod nair. volume 27, pages

807–814, 06 2010.

Hamid Gadirov, Lennard Manuel, Steffen Frey

136

26. Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of

Computational and Applied Mathematics, 20:53–65, 1987.

27. R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742, 2006.

28. Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection for dimension

reduction, 2020.

29. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic differ- entiation in pytorch. In NIPS-W, 2017.

30. RUG. High performance computing cluster. https://www.rug.nl/society-business/ centre-for-information-

technology/research/services/hpc/facilities/ peregrine-hpc-cluster, 2023.

31. Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits. 2005.

32. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut- dinov. Dropout: A simple way to

prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

33. H. Gadirov, Q. Wu, D. Bauer, K. L. Ma, J. B. T. M. Roerdink, & S. Frey, (2025). HyperFLINT: Hypernetwork-based Flow

Estimation and Temporal Interpolation for Scientific Ensemble Visualization. Computer Graphics Forum, 44(3), Article

e70134. https://doi.org/10.1111/cgf.70134

34. H. Gadirov, J. B. T. M. Roerdink and S. Frey, FLINT: Learning-Based Flow Estimation and Temporal Interpolation for

Scientific Ensemble Visualization, in IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 10, pp. 7970-

7985, Oct. 2025, doi: 10.1109/TVCG.2025.3561091.

35. H. Gadirov. Autoencoder-based feature extraction for ensemble visualization. Master’s thesis, University of Stuttgart, 2020.

url http://dx.doi.org/10.18419/opus-11304.

36. Hamid Gadirov, (2025). Machine Learning for Scientific Visualization: Ensemble Data Analysis. [Thesis fully internal (DIV),

University of Groningen]. University of Groningen. https://doi.org/10.33612/diss.1402847307

37. Z. Yin, H. Gadirov, J. Kosinka, and S. Frey. ENTIRE: Learning-based Volume Rendering Time Prediction. arXiv preprint

arXiv:2501.12119, 2025.

38. Bauer, D., Wu, Q., Gadirov, H., & Ma, K. L. (2025). GSCache: Real-Time Radiance Caching for Volume Path Tracing using

3D Gaussian Splatting. IEEE transactions on visualization and computer graphics, PP, 10.1109/TVCG.2025.3634634.

Advance online publication. https://doi.org/10.1109/TVCG.2025.3634634

39. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). Lora: Low-rank adaptation of large

language models. ICLR, 1(2), 3.

40. Manuel, L., Gadirov, H., & Frey, S. (2025). Autoencoder-based semi-supervised dimensionality reduction and clustering for

scientific ensembles (Research internship project). arXiv. https://arxiv.org/abs/2512.11145

41. H. Gadirov. Report on container technology for the ATLAS TDAQ system

42. Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal,

2014(239), 2.

